Reg. No. :					

Question Paper Code: 46424

$B.E.\ /\ B.Tech.\ DEGREE\ EXAMINATION,\ NOV\ 2018$

Sixth Semester

Electrical and Electronics Engineering

14UEC624 - APPLIED DIGITAL SIGNAL PROCESSING

(Regulation 2014)

(Common to EIE and ICE branches)

	(CC	minon to ETE and IC	E Granenes)	
Du	ration: Three hours		Maxin	num: 100 Marks
		Answer ALL Que	estions	
]	PART A - $(10 \times 1 = 1)$	10 Marks)	
1.	The system $y(t) = 3x(t) + 5$			
	(a) Non-linear	(b) Dynamic	(c) Non-Causal	(d) unstable
2. Integration of step signal results in signal.				
	(a) ramp	(b) delta	(c) Sinusoidal	(d) triangular
3. The LTIDT system with system function $h(n)=a^n u(n)$ is stable, only if				
	(a) a>1	(b) 1/a<∞	(c) a<∞	(d) a<1
4.	Convolution in time domain	ı is equal to	in frequency domain.	
	(a) addition	(b) multiplication	(c) compression	(d) expansion
5.	multiplications are	e required to compute	e N-point DFT using radi	x-2 FFT.
	(a) N/2 \log_2 N /2	(b) N/2 log ₂ N	(c) 1/N log ₂ 1/N	(d) N log ₂ N

(c) 2

(d) 1

6. Compute the X(0) of the sequence $x(n)=\{1, 0, 1, 0, 1, 0, 1, 0\}$

(b) 4

(a) 8

7.	The condition for linear phase characteristic in FIR filter is, the impulse $h(n)=$ where N is the duration of the sequence.						
	(a) $h(n+N-1)$	(b) $h(N+1-n)$	(c) h(N-1-n)	(d) h(n-N-1)			
8.	When s=LI	PF is converted to HPF i	n analog domain.				
	(a) $\frac{s}{\Omega_c}$	(b) $\frac{\Omega_c}{s}$	(c) $s\Omega_c$	$(d) s^2$			
9.	The pipeline depth of	TMS320C50 is					
	(a) 6	(b) 4	(c) 2	(d) 0			
10.	phase lead	ls decode phase in pipel	ining.				
	(a) execute	(b) fetch	(c) write	(d) read			
		PART - B (5 x 2 =	= 10 Marks)				
11.	Check Whether the sy	stem y (t) = $3x^2$ (t) +5 is	Stable or not.				
12.	State and Prove Final	Value theorem of Z-trai	nsform.				
13.	What are the difference	ces and similarities betw	reen DIF and DIT alg	gorithms?			
14.	What is the necessary filter?	and sufficient condition	for linear phase cha	racteristic in FIR			
15.	What is pipelining?						
		PART - C (5 x 16	= 80 Marks)				
16.		(3) og (n)	•	• • •			
	$(iv) y(n) = x^2$	(2n+1)		(16)			
		Or					
	-	ampling theorem for lo	•	signal and explain the (16)			

17. (a) Using residue method find the inverse Z transform of $X(z) = [1 + 3z^{-1}] / [(1 + 3z^{-1} + 2z^{-2})], |z| > 2. \tag{16}$

(b)	State and prove the time	shifting and convolution	n property of Z-transform.	(16)
-----	--------------------------	--------------------------	----------------------------	------

18. (a) Evaluate 8-point DFT of the following sequence using DIF-FFT $x[n]=\{2, 1, 2, 1, 0, 2, 0, 2\}.$ (16)

Or

- (b) Derive the butterfly diagram of 8 point radix-2 decimation in Time FFT algorithm. (16)
- 19. (a) Design a digital low-pass Butterworth IIR filter using bilinear z-transform with a 3dB cut-off frequency of 2kHz and minimum attenuation of 30dB at 4.25kHz for a sampling rate of 10kHz. (16)

Or

(b) Design a filter with
$$H_d(e^{j\omega}) = \begin{cases} e^{-j3\omega}, & \frac{-\pi}{4} \le |\omega| \le \frac{\pi}{4} \\ 0, & \frac{\pi}{4} < |\omega| \le \pi \end{cases}$$

Using a Hamming window with N = 7. (16)

20. (a) With a neat block diagram explain in detail about the architecture of TMS320C50. (16)

Or

- (b) (i) Explain the internal memory organization of TMS320C50 processor (8)
 - (ii) Explain various addressing modes of TMS processor. (8)