Reg. No.:					

Question Paper Code: 46402

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Sixth Semester

Electronics and Communication Engineering

	Electronics and Cor	initialiteation Engineer	ing			
14U	EC602 - WIRELESS C	COMMUNICATION S	SYSTEMS			
	(Regul	lation 2014)				
Duration: Three hour	s		Maximum: 100 Mark	ζS		
	Answer A	ALL Questions				
	PART A - (1	$0 \times 1 = 10 \text{ Marks}$				
1. Wireless commun	nication is started in					
(a) 1869	(b) 1895	(c) 1879	(d) 1885			
2. For the case of he	exagonal cell we can di	vide it into six equilat	eral triangles.			
Area of each e	quilateral is,					
(a) $3/\sqrt{4}R^2$	(b) $3/4 R^2$	(c) $\sqrt{3}/4 \text{ R}^2$	(d) $3/\sqrt{4} R$			
3. Reflection is						
(a) Propagation	on mode	(b) Propagation mechanism(d) None of the above				
(c) Spread spe	ectrum					
4. Link budget cons (a) Useful si		(b) Interfering n	oise power			
(c) Both (a)	and (b)	(d) None of thes	e			

(b) Three BPSK

(d) Two M-ary PSK

5. QPSK is a composite of (a) Two BPSK

(c) Two FSK

6.	11 (iray en	coded inp	out debit is 11	then the	e phase 9 QPSK	signal is?			
		(a) π /	' 4	(b) $3\pi/4$	(c)	$5\pi/4$	(d)	$7\pi/4$		
7.	Div	versity t	echnique							
		(a) Pr	ovides sig	gnificant link	improv	ement				
		(b) No	eeds train	ing overhead						
		(c) Bo	oth (a) and	d (b)						
		(d) No	one of the	se						
8.	The	e techni	que for co	ombining div	ersity si	gnals are				
		(a) Fe	edback		(b)	Maximal ratio				
	(c) Equal gain			(d)	(d) All the above					
9.			are typica	ally characteri	zed by	very small cells	, especially in	n densely	populated	
	are	as.								
		(a) 20	G system		(b)	3G system				
		(c) 2	5G Syster	n	(d)	3.5G system				
5.	10.	Modu	lation for	nat used for I	EEE 80	2.11.a				
		(a) FI	OM	(b) THM		(c) OFDM	(d)	OTDM		
				PAR	Г - В (5	x 2 = 10 Marks)			
11.	De	fine fre	quency re	use.						
12.	Dif	ferentia	ate Time a	and frequency	selecti	ve fading.				
13.	Lis	t out th	e factors t	hat influence	the cho	ice of digital mo	odulation.			
14.	Wh	ny diver	sity and e	equalization to	echnique	es are used?				
15.	Wh	nat is di	versity?							
				PART	- C (5	x 16 = 80 Marks	s)			
16.	(a)	Discus	ss about p	ropagation ef	fects wi	th mobile radio			(16)	
						Or				
	(b)			_		cellular system, call is routed.	explain the	various	functional (16)	

17. (a	Explain the three basic propagation mechanisms in a mobile communication sy	stem. (16)
	Or	
(b	o) (i) Discuss about wide band model.	(8)
	(ii) What is the need for link calculation? Explain with suitable example.	(8)
18. (a	i) (i) How MSK signals are generated. Explain in detail.	(8)
	(ii) Discuss in detail the demodulation techniques for Minimum Shift Keying.	(8)
	Or	
13. (b)	Explain with neat signal diagrams the modulation and demodulation technique QPSK.	of (16)
19. (a	Explain in detail about:	
	(i) Linear equalizers.	(8)
	(ii) Decision feedback equalizers.	(8)
	Or	
(b) Explain the principles of diversity.	(16)
20. (a	Explain CDMA and compare its performance with TDMA.	(16)
	Or	
(b	o) (i) Illustrate the block diagram of IS-95transmitter.	(8)
	(ii) Write short notes on 2G and 3G Wireless networks and standard.	(8)