Reg. No. :	
------------	--

Question Paper Code: 55402

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fifth Semester

Electronics and Communication Engineering

15UEC502 - TRANSMISSION LINES AND WAVEGUIDES

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

1. Relationship between the nepers and decibels are approximately equal to					CO1- R
	(a) 1neper= 6.686 dB		(b) 1neper= 7.686 dB		
	(c) 1neper= 8.686 dB		(d) 1neper= 9.686 dB		
2.	A line of finite let characteristic impedar	ngth, terminated in nce, appears to sending	a load equivalent to gend generator as) its	CO2-R
	(a) Infinite line		(b) Finite line		
	(c) Finite line with fix	ed value	(d) None of the above	e	
3.	For a half wave line ,t		CO3-R		
	(a) $Z_S = Z_R$	(b) $Z_S > Z_R$	(c) $Z_S < Z_R$	(d) None of the	he above
4.	There is no electric field can exist in the direction of the magnetic field such a wave is said to be				
	(a) TE wave	(b) TM wave	(c) TEM wave	(d) Quasi TM	[wave
5.	Which is the most dominant mode in rectangular wave guide. CO5-R				
	(a) TE ₀₀	(b) TE ₁₀	(c) TE ₀₁	(d) TE ₁₁	

$PART - B (5 \times 3 = 15 \text{ Marks})$

- CO1- U 6. Explain four properties of symmetric networks. A 50 Ω line is terminated in load $Z_R = 90+$ J60 Ω .Determine the reflection CO2- App 7. coefficient. 8. Explain nodes and antinodes in Standing Wave Ratio. CO3- U 9. Describe TEM wave. CO4- U 10. A rectangular wave guide with dimensions a = 8.5 cm and b = 4.3 cm is fed by CO5- App 5 GHz carrier. Will a TE_{11} mode be propagated. $PART - C (5 \times 16 = 80 Marks)$ 11. (a) Design a Low pass filter (both π and T sections) having a cut off CO1- App (16)frequency of 2 KHz to operate with a terminal load resistance of 500Ω. Or (b) Discuss the theory of band elimination filter for both T and π CO1-U (16)configurations and also plot the variation of reactance with respect to frequency. 12. (a) Analyze and obtain the general solution for Transmission line CO2-U (16)voltage and current. Or (b) Describe input impedance of open and short circuited lines, and CO2-U (16)plot the variation of input impedance of dissipation line as a function of length for open and short line. 13. (a) Explain the parameters of the coaxial line at higher frequencies CO3- U (16)Or (b) Illustrate the applications of Smith chart CO3- U (16)14. (a) (i) Obtain the expression for the EM field components of TM CO4-U (12)
 - waves between parallel planes propagating in Z direction .

2

(ii) Discuss the characteristics of TE and TM Waves CO4- U (4)

- (b) Explain the characteristics of TEM waves. Derive its propagation CO4- U (16) parameters
- 15. (a) (i) An air filled rectangular wave guide has a cross sectional CO5- App (8) dimension of x=8cm and y=4cm. Find the cut off frequency for the following modes TE_{10} and TE_{11} .

(ii) Analyse and obtain the field equations for TE waves in CO5-U (8) rectangular wave guide for TE_{10} mode.

Or

(b) (i) Describe cavity resonator. CO5- U (8)

ii) Deduce the expression for resonant frequency of the CO5-U (8) rectangular cavity resonator for any given mode.