C

Reg. No.:					

Question Paper Code: 59409

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Elective

Electronics and Communication Engineering

15UEC909 - DIGITAL IMAGE PROCESSING

		(Regulati	ion 2015)					
Dura	ation: Three hours			Maximum: 100	100 Marks			
		Answer AL	L Questions					
		PART A - (5	x 1 = 5Marks					
1.	For coordinates p(2,3	(CO1 -R					
	(a) $(3,3)(2,3)(1,3)(1,3)$)	(b) (3,3)(2,3)(1,1)(2,2)					
	(c) $(3,3)(2,4)(1,3)(2,2)$)	(d) $(3,3)(2,4)(1,3)(2,1)$					
2.	Median filter belongs	filters?	(CO2 -R				
	(a) Linear spatial filter	r	(b) Frequency domain filter					
	(c) Order static filter		(d) Sharpening filter					
3.	How many bit RGB co	(CO3 -R					
	(a) 32-bit	(b) 24-bit	(c) 16-bit	(d) 8-bit				
4.	On which of the followheregion changes?	(CO4 -R					
	(a) Stretching	(b) Rotation	(c) Folding	(d) Distance m	neasure			
5.	5. When the threshold value T depends only on the intensity value [f(x, y)] then threshold technique is calledthreshold							
	(a) Local	(b) Global	(c) Adaptive	(d) Optimum				
		PART - B (5 :	x 3= 15Marks)					
6.	What is the total number of bits to store a 512×512 image with 256 gray levels?							
7.	Write down the average filtering mask							
8.	Draw the model of im		CO3 -R					

9. Write Sobel horizontal and vertical edge detection masks.

10. Evaluate the advantages and disadvantages of using more than one seed in a CO5 -R region growing technique.

$$PART - C (5 \times 16 = 80 Marks)$$

11. (a) Explain the principle of sampling and quantization. Discuss the CO1- App (16) effect of increasing the (i) Sampling frequency (ii) Quantization level.

Or

- (b) Illustrate the principle of operation of human eye and summarize CO1 -U (16) about various chromic models.
- 12. (a) Apply 3×3 averaging filter for and median filter the following CO2 -App (16) image with zero padding.

$$A = \begin{vmatrix} 7 & 9 & 11 \\ 10 & 50 & 8 \\ 9 & 5 & 6 \end{vmatrix}$$

Or

- (b) Explain the image restoration technique to remove the blur CO2 -Ana (16) caused by Uniform linear motion.
- 13. (a) Explain model of image degradation/restoration process with a CO3 -App (16) block diagram.

Or

- (b) Design an Least Mean Square filter with $\Upsilon=1$ (Weiner filter)and CO3- Ana (16) also derive its equation
- 14. (a) Describe in detail about various thresholding techniques CO4 -U (16)

Or

Or

- (b) Explain region splitting and merging segmentation technique CO4- Ana (16) with an example.
- 15. (a) Explain the basic operations of morphological image processing CO5 -U (16)
 - (b) Discuss about the importance of Hit-or-Miss morphological CO5-U (16) transformation operation on a digital binary image with examples.