A	L	Reg. No. :										
		Question Pap	er Co	ode:	594	404	٦					
	В.	E. / B.Tech. DEGREE E	XAM	NA]	ΓΙΟΝ	J. NO		2018				
		Ele	Elective									
		Electronics and Comr	Electronics and Communication Engineering									
		15UEC904–LINEAR CO	ONTR	ol e	ENGI	INEE	ERIN	IG				
		(Regula	tion 20)15)								
Dui	ration: Three hours					Ma	xim	um:	100 1	Mark	S	
		Answer AI	LL Qu	estio	ns							
		PART A - (10	x 1 =	10 M	larks	5)						
1.	In a mechanical sy dissipated in	vstem consisting of mass	, sprin	g and	l das	h-po	t, the	e ene	ergy	is	C	01 - R
	(a) Mass	(b) Spring	(c) [Dash-	pot			(d) No	ne of	fthe	above
2.	The branch of a si	gnal flow graph represer	its								(201 - R
	(a)The system var	iable	(b) 7	The f	uncti	onal	rela	tions	oftl	he va	riabl	es
	(c) The system par	rameters	(d) N	Jone	of th	ne ab	ove					
3.	The impulse response of a first order system is								(C O2- U		
	(a) Constant with respect to time											
	(b) Varies linearly with respect to time											
	(c) Exponentially increasing with respect to time											
	(d)Exponentially of	xponentially decreasing with respect to time										
4.	The static error co	nstants depend on										CO2- R
	(a) The order of th	ie system	(b) 7	The ty	ype c	of the	e sys	tem				
	(c) Both type and	order of the system	(d) N	Jone	of th	ne ab	ove					
5.	By substituting s=	$j\omega$, the frequency respon	se plo	t give	es						(CO3-R
	(a) Transient respo	onse of the system										
	(b) Steady state re	sponse of the system										
	(c) Initially transie	ent and then steady state	respor	ise								
	(d) None of the ab	ove										

6.	If the phase margin is negative, it indicates that the system is								
	(a) Highly stable	(b) Unstable							
	(c) Oscillatory	(d) It has nothing to do with stability							
7.	By using Routh's stability criterion it characteristic polynomial in	is possible to find the roots of the	CO4 R						
	(a) RHP only	(b) LHP only							
	(c) Imaginary axis only	(d) All the above three							
8.	The root loci are		CO4-U						
	(a) Straight lines	(b) Continuous curves							
	(c) Curves with discontinuity	(d) None of the above							
9.	A transfer function of a control system Which one of the following statements is tr	does not have pole-zero cancellation. ue?	CO5-R						
	(a) System is neither controllable or observable								
	(b)System is completely controllable and	observable							
	(c) System is observable but uncontrollable	le							
	(d) System is Controllable but unobservable	e							
10.	The state-variable description of a X=Ax Where x is a two-dimensional state $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$ The poles of the system are located as $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$.	a linear autonomous system is te vector and A is a matrix given by ated at	CO5-R						
	(a) -2 and +2 (b) -2j and +2j	(c) -2 and -2 (d) +2 and +2							
PART - B (5 x 2 = 10 Marks)									
11.	State the mason's gain formula for signal flow graph.								
12.	List out the drawback of static coefficients.								
13.	Interpret gain and phase cross over frequency.								
14.	Write Routh Hurwitz stability criterion.								
15.	Bring out the advantages and disadvantages of phase variables.								

$$PART - C$$
 (5 x 16= 80 Marks)

16. (a) Find the transfer function $X_2(s) / F(s)$ of the mechanical system CO1- App (16)shown in figure.

Convert the block diagram to signal flow graph and determine CO1- App (b) (16)the transfer Function using Mason's gain formula.

17. (a) Derive the unit step response of the second order system for the CO2-U (16)under damped case.

Or

- A Unity feedback control system has an open loop transfer CO2-App (b) (16)function G(s)=10/s(s+2) Find the rise time, percentage overshoot, peak time, time delay and settling time for a step input of 12 units.
- 18. (a) Plot the Bode diagram for the following transfer function. CO3-App (16)G(s)=5(1+2s)/(1+4s)(1+0.25s)

3

(b) What is meant by lag compensator and write design steps of lag CO3-U (16)compensator using bode plot approach. 19. (a) (i) Construct Routh array and determine the stability of the CO4-App (10)system whose characteristic equation is $S^{6}+2S^{5}+8S^{4}+12S^{3}+20S^{2}+16S+16=0$. comment on location of the roots. (ii) Construct Routh array and determine the stability of the CO4-App (6) system whose characteristic equation is $S^{5}+S^{4}+2S^{3}+2S^{2}+3S+5=0$.comment on location of the roots. Or (b) The open loop transfer function of a unity feedback system is CO4-Ana (16)given by $G(s) = K(S+9)/S(S^2+4S+11)$ Sketch the root locus. (i) Determine the canonical state model of the system whose 20. (a) CO₅-App (10)transfer function is T(s)=2(S+5)/(S+2)(s+3)(S+4)(ii) Obtain the state model of the system CO₅-App (6) $Y(S)/U(S)=10/S^3+4S^2+2S+1$

Or

(b) (i)The state model of a system is given by CO5-App (10)

$\begin{bmatrix} x_2 \end{bmatrix}$ L 0 2 -31LX ³ 1 L01 LX	X_1 $\dot{X_2}$ $\dot{X_2}$	=	0 -2 0	0 -3 2	$\begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$	$\left] + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$	[u];	<i>Y</i> = [1	0	0]	X_1 X_2 X_3
---	-------------------------------------	---	--------------	--------------	--	--	------	---------------	---	----	-------------------------

Determine whether the system is completely controllable and observable.

(ii) A linear time –invariant system is characterized by CO5-App (6) homogeneous state equation.

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Compute the solution of the homogeneous equation, assuming the initial state vector. $X0=\begin{bmatrix}1\\0\end{bmatrix}$