		Reg. No. :										
		Question I	Paper C	ode:	494	18						
	В	E.E./B.Tech. DEGREE	E EXAMI	NATI	ON, N	VOV	201	8				
			Elective									
		Electronics and	Communi	cation	Engi	neeri	ng					
	-	14UEC918 - RADAR	AND NA	AVIG <i>i</i>	ATIO]	NAL	AII	OS				
		(Reg	ulation 20)14)								
Dura	ation: Three hours	PART A - ((10 x 1 = er all Ques		arks)	Maxi	mum	n: 100	O Ma	rks		
1.	The average power	er of radar is equal to									CO1	- R
	(a) $P_t * PRF$		(b)	$P_t * F$	PRP							
	(c) P _t * duty cycle	•	(d)	P _t /du	ity cy	cle						
2.	An example of probability Density function is							CO1	- R			
	(a) Gaussian	(b) Gamma	(c)	kurod	la				(d) L	apla	ce	
3.	The blind speed in radar are eliminated by								CO2-	R		
	(a) Delay line cancellers (b) Staggered PRF											
	(c) Doppler shift		(0	l) sing	le PR	F						
4.	For Moving Target Indication (MTI) signal processing a							CO2-	R			
	(a) Bessel filter is	used	(b)	Butter	worth	filte	er is 1	used				
	(c) Elliptic filter i	(d)	Trans	versal	filte	r is u	ised					
5.	The range resolution of pulse radar can be improved by							CO3	- R			
	(a) increasing pul	se width	(b d	ecreas	sing p	ulse	widt	h				
	(c) increasing pul	se amplitude	(d)	decrea	asing p	pulse	amp	olituo	de			

6.	The method of scanni mechanically	CO3- R				
	(a) steering using log periodic array antennas (b) steering using Bino			mial array antennas		
	(c) steered phased array antennas (d) steering using p			arasitic array antennas		
7.	Very high frequency Omni directional Range operates at			CO4- R		
	(a)108-136 MHz	(b) 108-136 KHz	(c) 108-136 GHz	(d) 108-136 THz		
8.	Number of slave stati	ons in DECCA chain	is	CO4- R		
	(a) 1	(b) 2	(c) 3	(d) 4		
9.	The abbreviation nam	ne TACAN is		CO5- R		
	(a) Tactical air naviga	ation	(b) Tactical atmosphere na	vigation		
	(c) Troposphere air na	avigation	ion (d) Troposphere atmosphe			
10.	One of the componen	One of the component of Inertial Navigation system is				
	(a) goniometer	(b)microphone	(c)loud speaker	(d)Accelerometer		
		PART – B (5	x 2= 10Marks)			
11.	Define maximum rad	ar range & Write the s	simple radar range equation	CO1- R		
12.	What is meant by stag	CO2- R				
13.	Differentiate false ala	CO3- R				
14.	. What are the errors possible in direction finders?					
15	Explain the method o	f transit system used i	n Satellite based navigation	CO5- R		

PART – C (5 x 16= 80Marks)

		17 HC1							
16.	(a)	Derive the simplified version of radar range equation in terms of minimum detectable signal to noise ${\rm ratio}(S/N)_{\rm min}$. Also explain why $(S/N)_{\rm min}$ is a better measure of a radous detection performance than in minimum detectable signal($S_{\rm min}$).	CO1- App	(16)					
		Or							
	(b)	Explain how the system losses will affect on the Radar range	CO1- App	(16)					
17.	(a)	i) With neat diagram explain the operation of conical scan tacking radar and explain its operation.	CO2- App	(8)					
		ii) What are the basic differences between a search radar and a tracking radar? Discuss the various scanning techniques and tracking mechanisms	CO2- App	(8)					
		Or							
	(b)	Describe in detail about the conical scan and sequential lobing	CO2- U	(16)					
18.	(a)	Explain in detail about Parabolic reflector antennas . Analyze $\ensuremath{\mathrm{f/D}}$ ratio of the same .	CO3- Ana	(16)					
	Or								
	(b)	Discuss in detail about Linear Beam Power tube (klystron Amplifier).	CO3- U	(16)					
19.	(a)	(i) Explain and analyse the principle of Loop antenna with suitable equations.	CO4- Ana	(10)					
		(ii) Explain in detail about VOR receiving equipment	CO4- U	(6)					
		Or							
	(b)	Explain the process to measure range using Airborne Distance measurement equipment and also obtain the transmitter and receiver characteristics of Interrogator.	CO4- Ana	(16)					
20.	(a)	Explain the different hyperbolic system of navigation in detail. Or	CO5- U	(16)					
	(b)	(i) Describe in detail an Instrument Landing system.	CO5- U	(10)					
		(ii) Briefly explain a ground controlled approach system.	CO5- U	(6)					