Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, NOV 2018

Fourth Semester

Computer Science and Engineering

15UMA421 - DISCRETE MATHEMATICS

(Common to Information Technology)

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A -
$$(10 \text{ x } 1 = 10 \text{ Marks})$$

1.	If 'k' Pigeon occupies 'n more than Pigeons	(m>n) holes then atles	ast one hole has		CO1-U
	(a) $\left[\frac{n-1}{k}\right]$	(b) $\left[\frac{k-1}{n}\right]$	(c) $\left[\frac{k-1}{n}\right] + 1$	(d) $\left[\frac{n-1}{k}\right] + 1$	
2.	We need quantifiers to fo	ormally express the me	aning of the words		CO1- U
	(a) And and Or	(b) Ifthen	(c) If and only if	(d) All and so	ome
3.	The number of possible s $x, y, z \ge 0$ is	olutions of the equation	y = x + y + z = 15 for	(СО2- Е
	(a) C(15, 3)	(b) C(16, 3)	(c) C(17, 2)	(d) C(18, 2)	
4.	ways are the prize winner and a third-p	re to select a first-priz	ze winner, a second- different people.	C	202- U
	(a) 100	(b) 100 x 99	(c) 100 x 99 x 98	(d) 100 + 99	+ 98
5.	A graph in which every vertex has the same degree is called CO3-				CO3- E
	(a) Simple graph		(b) Regular graph	1	
	(c) Complete graph		(d) Euler graph		
6.	If a graph has 15 edges, what must the degrees of the vertices add up CO3-to?				
	(a) 25	(b) 15	(c) 30	(d) 45	

7.	The intersection of two normal subgroups of a group is a					CO4- R	
	(a) nor	mal subgroup	(b) group	(c) subgroup	(d) none	e of thes	e
8.	((N,D)	is a				CO	4- R
	(a) Abo	elian group	(b) group	(c) monoid	(d) semo	ogroup	
9.	In dist	ributive compleme	nted lattice $a \leq b$ if and	only if		CO	5- R
	(a) <i>a</i> :	= <i>b</i>	(b) $a' \oplus b = 0$	(c) $a * b' = 1$	(d) b'≤	$\leq a'$	
10.	$x \wedge x'$	is equivalent to				CO	5- R
	(a) <i>x</i> ′		(b) <i>x</i>	(c) 0	(d) 1		
11.	PART – B (5 x $2=10$ Marks) Differentiate predicate and predicate logic? CO1-E						Ξ
12.	State Pigeonhole principle.					CO2-]	R
13.	Give an example of a graph which is both an Eulerian and a Hamiltonian CO3- Ana circuit.						Ana
14.	Prove that the identity element is unique in a group.					CO4- R	
15.	Define poset . Give an example.					CO5- R	
			PART – C (5 x 16	= 80Marks)			
16.	(a)	Obtain the princ normal form of (ipal conjunctive and pr ~ $P \rightarrow r$) \land ($q \leftrightarrow p$).	incipal disjunctive	CO1- Ap	р	(16)
	Or						
	(b)	(i) Show that (x)	$(\mathbf{P}(\mathbf{x}) \lor \mathbf{Q}(\mathbf{x})) \implies (\mathbf{x}) \mathbf{P}$	$(\mathbf{x}) \lor (\exists x) \mathbf{Q} (\mathbf{x}).$	CO1- Ap	р	(6)
		(ii) Prove that the how to write pu- knows how to w	e premises "one student rograms in JAVA" and write programs in JAVA	in this class knows d "Everyone who A can get a high-	CO1- Ap	pp	(10)

paying job " imply the conclusion "Some in this class can get a high-paying job".(i) Prove that by methematical induction CO2

17. (a) (i) Prove that by mathematical induction CO2- E (12)

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$
(ii) Solve s(k) -5s(k-1) + 6s(k-1)=2, s(0)=1 and s(1)=1 CO2- U (4)

2

	(b)	Use the method of generating function to solve the recurrence relation	CO2- App	(16)
		a_{n+1} -8 a_n + 16 a_{n-1} = 4 ⁿ ; $n \ge 1$; $a_0 = 1$, $a_1 = 8$.		
18.	(a)	Construct circuit matrix, incidence matrix and path matri (v_2, v_4) .	CO3- Ana	(8)
		Or		
	(b)	(i) Prove that the maximum number of edges in a simple disconnected graph G with n vertices and k components is $\frac{(n-k)(n-k+1)}{2}$	CO3- Ana	(8)
		(ii) Prove that a tree with n vertices has n-1 edges.	CO3- Ana	(8)
19.	(a)	(i) State and prove Lagrange's theorem.	CO4- Ana	(8)
		(ii) The necessary and sufficient condition that a non empty subset of a group G be a Subgroup is $a \varepsilon H, b \varepsilon H \Rightarrow a^* b^{-1} \varepsilon H$	CO4- Ana	(8)
		Or		
	(b)	(i) Prove that the order of a subgroup of a finite group divides the order of the group.	CO4- App	(8)
		(ii) Show that every finite integral domain is a field.	CO4- App	(8)
20.	(a)	(i) State and prove the distributive inequalities in a lattice.	CO5- U	(8)
		(ii) Show that every chain is a distributive lattice. Or	СО5- Е	(8)
	(b)	 (i) In a Boolean algebra show that the following statements are equivalent. For any <i>a</i> and <i>b</i>, (a) <i>a</i>+<i>b</i> = <i>b</i> (b) <i>a</i>.<i>b</i> = <i>a</i> (c) <i>a'</i>+<i>b</i> = 1 (d) <i>a</i>.<i>b'</i> = 0 	CO5- E	(10)
		(e) $a \leq b$.		
		(ii) Prove that algebraically (a) $a\overline{b} + b\overline{c} + c\overline{a} = \overline{a}b + \overline{b}c + \overline{c}a$ (b) $(a+b')(b+c')(c+a') = (a'+b)(b'+c)(c'+a)$	СО5- Е	(6)