Reg. No. :											
------------	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 44024

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fourth Semester

Electronics and Communication Engineering

14UMA424 - PROBABILITY AND RANDOM PROCESS

(Regulation 2014)

Maximum: 100 Marks

Answer ALL Questions

Duration: Three hours

(Statistical Tables are permitted)

PART A - (10 x 1 = 10 Marks)

1.	The probability of im			
	(a) 1	(b) 0	(c) 2	(d) 0.5
2.	The mean value of P	oisson distribution is		
	(a) θ	(b) 1	(c) 0	(d) λ
3.	If two random variable	es X and Y are indep	endent, then covariance i	S
	(a) θ	(b) 1	(c) 0	(d) λ
4.	The conditional distri	bution of X given Y i	S	
	(a) $f(x/y) = f(x, y)$	f(x)	$(\mathbf{b})f(x/\mathbf{y}) = f$	f(x, y)/f(y)
	(c) f(x/y) = f(x, y)	f(x)	$(\mathbf{d})f(x/\mathbf{y}) = f$	f(x, y)f(y)
5.	The sum of two indep	endent Poisson proc	ess is	
	(a) poisson proce	58	(b) marcov pr	rocess
	(c) random proces	58	(d) stationary	
6.	If both T and S are dis	screte, then the rando	m process is called	
	(a) stationary		(b) discrete ra	andom sequence
	(c) random proces	58	(d) poisson p	rocess
7.	$R_{_{XX}}(au)$ is an	function of $~ au$		
	(a) positive	(b) 1	(c) even	(d) odd

- 8. If $R_{xy}(\tau) = \mu_X \times \mu_Y$ then X(t) and Y(t) are called (a) Independent (b) Orthogonal (c) Stationary (d) none of these
- 9. Which of the following system is Causal?

(a)
$$y(t)=x(t+a)$$
 (b) $y(t)=x(t-a)$
(c) $(t)=a x(t+a)$ (d) $y(t)=x(t)-x(t-a)$

- 10. Colouted Noise means a noise that is
 - (a) white (b) not white (c) coloured (d) none of these

PART - B (5 x
$$2 = 10$$
 Marks)

- 11. If a Random Variable X has the Moment generating function $M_x(t) = \frac{2}{2-t}$. Determine the variance of X.
- 12. Let *X* and *Y* be random variables with joint density function f(x,y)=2-x-y in $0 \le x < y \le l$, fomulate the value of E(x)?
- 13. Outline discrete random process. Give an example for it.
- 14. State Winear–Khinchine theorem.
- 15. If X(t) is a WSS process and if $Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$, then formulate $R_{XY}(\tau) = R_{XY}(\tau) * h(\tau)$.

PART - C (5 x
$$16 = 80$$
 Marks)

- 16. (a) (i) If the probability density function of a random variable X is given by $f(x) = K x^2 e^{-x}, x \ge 0$. Identify the value of K, r^{th} moment, mean and variance. (8)
 - (ii) Establish the memory less property of geometric distribution. (8)

Or

(b) A random variable X has the following probability function

Value of x	0	1	2	3	4
P(x)	k	3 <i>k</i>	5 <i>k</i>	7 <i>k</i>	9k

Find the value of *k*, P(x < 3) and distribution function of *x*.

(16)

- 17. (a) (i) The joint probability density function of a bivariate random variable (X, Y) is $f(x, y) = \begin{cases} k(x+y), 0 < x < 2, 0 < y < 2\\ 0, elsewhere \end{cases}$ Find (1) the value of k (2) the marginal probability density of x and y (3) x and y independent. (8)
 - (ii) The two lines of regression are 8x 10y + 66 = 0, 40x 18y 214 = 0. The variance of x is 9. Evaluate the mean values of x and y and the Correlation coefficient between x and y.

Or

(b) (i) The joint probability distribution of *X* and *Y* is given below:

YX	-1	1
0	1/8	3/8
1	2/8	2/8

Find the correlation coefficient between *X* and *Y*.

- (ii) If the pdf of a two dimensional random variable (*X*, *Y*) is given by f(x, y) = x + y, 0 < x, y < 1. Find the pdf of U = XY. (8)
- 18. (a) (i) Enumerate that the process $X(t)=A\cos\omega t+B\sin\omega t$ is Wide –Sense Stationary ,where A and B are random variables if E(A)=E(B)=0 and $E(A^2)=E(B^2)$ and E(AB)=0 (8) The transition probability matrix of a Markov chain $\{X_n\}$, n = 1,2,3,... having three

states 1, 2 and 3 is
$$P = \begin{bmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$$
 and the initial distribution is $P^{(0)} = (0.7, 0.2, 0.1)$.

Identify i)
$$P[X_2=3]$$
, ii) $P[X_3=2, X_2=3, X_1=3, X_0=2]$ (8)

Or

- (b) Generalize the Postulates of a Poisson process and Derive the Probability distribution for the Poisson Process. Also Show that the sum of two independent Poisson process is again a Poisson process. (16)
- 19. (a) (i) Define cross-correlation function and write the properties of cross-correlation function.(8)
 - (ii) State and Prove Wiener-Khinchine theorem. (8)

44024

(8)

(b) (i) Two random process X(t) and Y(t) are defined by $X(t) = A \cos \omega_0 t + B \sin \omega_0 t$ and $Y = B \cos \omega_0 t - A \sin \omega_0 t$. Show that X(t) and Y(t) are jointly wide-sense stationary, if *A* and *B* are uncorrelated random variables with zero means and the same variances and ω_0 is a constant. (8)

(ii) If the power spectral density of a WSS process is given by $S(\omega) = \begin{cases} \frac{b}{a} (a - |\omega|), & \text{for } |\omega| \le a \\ 0, & \text{for } |\omega| > a \end{cases}$

Find the autocorrelation function of the process.

20. (a) If $\{X(t)\}$ is a WSS process and if $y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$ then Prove that

(i) $R_{XY}(\tau) = R_{XX}(\tau) * h(-\tau)$ (ii) $R_{YY}(\tau) = R_{XY}(\tau) * h(\tau)$ (iii) $S_{XY}(\omega) = S_{XX}(\omega) H^*(\omega)$ (iv) $S_{YY}(\omega) = S_{XX}(\omega) |H(\omega)|^2$ (16)

Or

- (b) (i) The input to a time- invariant, stable linear system is a WSS process, Enumerate that the output will also be a WSS process.
 - (ii) If X(t) is a band limited process such that $S_{xx}(\omega) = 0$, $|\omega| > \sigma$, then formulate $2[R_{xx}(0) - R_{xx}(\tau)] \le \sigma^2 \tau^2 R_{xx}(0).$ (8)

(8)