Question Paper Code: 43021

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Third Semester

Civil Engineering

14UMA321 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to ALL branches)

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

- 1. The formula for finding the Euler constant a_n of a Fourier series in [0, 2π] is _____
 - (a) $a_n = \int_0^{\pi} f(x) cosnx \, dx$ (b) $a_n = \int_0^{2\pi} f(x) cosnx \, dx$ (c) $a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) cosnx \, dx$ (d) $a_n = \frac{1}{\pi} \int_0^{\pi} f(x) cos \frac{n\pi x}{l} \, dx$
- 2. R.M.S value of f(x) = x in (-1,1) is
 - (a) 0 (b) 1 (c) $\frac{1}{3}$ (d) $\sqrt{\frac{1}{3}}$
- 3. Find the Fourier sine transform of e^{-3x}

(a)
$$\sqrt{\frac{2}{\pi}} \frac{s}{s^2+9}$$
 (b) $\sqrt{\frac{2}{\pi}} \frac{a}{s^2+9}$ (c) $\frac{a}{s^2+9}$ (d) $\frac{s}{s^2+9}$

- 4. Fourier sine transform of xf(x) is,
 - (a) $F_c(s)$ (b) $F_s(s)$ (c) $-F_c(s)$ (d) $-F_s(s)$
- 5. $\lim_{z \to -1} (z-1) F(z) =$ (a) f(1) (b) $F(\infty)$ (c) $f(\infty)$ (d) f(0)

6. $Z\{cosn\theta\}$ is _____

(a)
$$\frac{(Z-\cos\theta)}{Z^2-2Z\cos\theta+1}$$
 (b) $\frac{Z(Z-\cos\theta)}{Z^2-2Z\cos\theta+1}$ (c) $\frac{Z}{Z^2-2Z\cos\theta+1}$ (d) $\frac{1}{Z^2-2Z\cos\theta+1}$

- 7. In one dimensional heat equation $u_t = \alpha^2 u_{xx}$. What is α^2 ?
 - (a) Velocity (b) Speed (c) Diffusivity (d) Displacement
- 8. A rod of length 40 cm whose one end is kept at 20°C and the other end is kept at 60°C is maintained so until steady state prevails. Find the steady state temperature at a location 15cm from A?
 - (a) 5 (b) 10 (c) 13 (d) 15
- 9. The finite difference approximation to y'_i =

(a)
$$\frac{y_{i+1} - y_{i-1}}{h}$$
 (b) $\frac{y_{i+1} + y_{i-1}}{h}$
(c) $\frac{y_{i+1} - y_{i-1}}{2h}$ (d) $\frac{y_{i+1} + y_{i-1}}{2h}$

- 10. Liebmann's iteration process is used to solve the _____
 - (a) One dimensional heat flow equation
 - (b) Two dimensional heat flow under steady state equation
 - (c) One dimensional wave equation
 - (d) Hyperbolic equation

PART - B (5 x
$$2 = 10$$
 Marks)

- 11. Find the Fourier constants b_n for x sinx in (- π , π).
- 12. Find the Fourier sine transform of $\frac{1}{x}$.
- 13. State initial and final value theorem of Z transform.
- 14. Define steady state condition on heat flow.
- 15. Write down the standard five-point formula to solve the Laplace equation.

PART - C (5 x
$$16 = 80$$
 Marks)

16. (a) (i) Express $f(x) = (\pi - x)^2$ as a Fourier series of periodicity 2π in $0 < x < 2\pi$. (8)

(ii) Find the Fourier series for $f(x) = x^2$ in $-\pi$, $x < \pi$. (8)

2

43021

- (b) (i) Find the cosine series for f (x) = x in (0, π) and then using Parseval's theorem, show that $\frac{1}{1^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{96}$. (8)
 - (ii) Find the complex form of Fourier series of f(x) if $f(x) = \sin ax$ in $-\pi < x < \pi$. (8)

17. (a) (i) Find the Fourier transform of $f(x) = \begin{cases} 1, & |x| \le a \\ 0, & |x| > a \end{cases}$. Hence evaluate $\int_{0}^{\infty} \frac{\sin s}{s} ds$ and using Parseval's identity prove that $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2}$ (8)

(ii) Find the Fourier transform of $e^{-a^2x^2}$ Hence prove that $e^{\frac{-x^2}{2}}$ is self reciprocal with respect to Fourier transforms. (8)

Or

- (b) (i) Show that Fourier Transform of $f(x) = e^{-\frac{x^2}{2}}$ is $e^{-\frac{s^2}{2}}$. (8)
 - (ii) Evaluate $\int_0^\infty \frac{dx}{(4+x^2)(25+x^2)}$ using Fourier transform method. (8)

18. (a) (i) Find
$$Z(cosn\theta)$$
 and hence deduce $Z\left(\frac{cosn\pi}{2}\right)$ (8)

(ii) Using convolution theorem, find the inverse Z- transforms of $\frac{z^2}{(z+a)^2}$. (8)

Or

(b) (i) Solve $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$ with $y_0 = 0$ and $y_1 = 1$. (8)

(ii) Find the inverse Z – transform of
$$\frac{z(z+1)}{(z-1)^3}$$
 by residue method. (8)

19. (a) A tightly stretched flexible string has its ends fixed at x = 0 and x = l. At time t = 0, the string is given a shape defined by f(x) = k(lx - x²) where 'k' is a constant, and then released from rest. Find the displacement of any point x of the string at any time t > 0. (16)

Or

43021

- (b) A metal bar 20cm long, with insulated sides, has its ends A and B kept at 30°C and 90°C respectively until steady state conditions prevail. The temperature at each end is suddenly raised to 0°C and kept so. Find the subsequent temperature at any time of the bar at any time.
- 20. (a) Solve the Poisson's equations $\nabla^2 u = -81xy$, 0 < x < 1, 0 < y < 1, h=1/3, u(0,y) = u(x,0), u(1,y) = u(x,1) = 100. (16)

Or

- (b) (i) Solve $u_{xx} = 32 \ u_t$ with h=0.25 for t>0; 0<x<1 and u(x,0)=u(0,t)=0; u(1,t)=t. Tabulate u upto t=5 sec using Bender-Schmidt formula. (8)
 - (ii) Find the solution to the wave equations $u_{xx} = u_{tt}$, 0 < x < 1, t > 0, given that $u_t(x,0)=0$, u(1,t) = u(0,t) = 0 and $u(x,0) = 100 \sin \pi x$. Compute u for 4 time steps with h=0.25. (8)

(16)