Reg. No. :					

Question Paper Code: 34022

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fourth Semester

Civil Engineering

01UMA422 - NUMERICAL METHODS

(Common to EEE, EIE and ICE)

(Regulation 2013)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions.

PART A -
$$(10 \times 2 = 20 \text{ Marks})$$

- 1. State the condition for convergence of iterative method.
- 2. Define truncation error.
- 3. State condition for the convergence of iterative methods of solving system of linear algebraic equations.
- 4. Find the dominant Eigen value of $A = \begin{pmatrix} 1, 2 \\ 3, 4 \end{pmatrix}$ by power method.
- 5. State Newton's backward interpolation formula.
- 6. State the conditions required for a natural cubic spline.
- 7. Using Newton's backward difference formula, write the formula for the first and second order derivatives at the end values at $x=x_n$.
- 8. State Romberg's integration formula to find the value of $I = \int_a^b f(x) \, dx$ for first two intervals.
- 9. Write the normal equations for fitting a straight line by the method of least squares.
- 10. How will you fit a curve of the form $y=ax^b$.

PART - B (5 x
$$16 = 80 \text{ Marks}$$
)

11. (a) (i) Find a positive root of $2x - \log_{10} x - 6 = 0$ using Newton Raphson method. (8)

(ii) Find a positive root of
$$x - \cos x = 0$$
 by Bisection method. (8)

Or

- (b) (i) Using the secant method find a real root of the equation $f(x) = xe^x 1 = 0$. (8)
 - (ii) Find the real positive root of 3x cosx 1 = 0 by Newton Raphson method correct to 6 decimal places. (8)
- 12. (a) (i) Solve the system of equations by Gauss Jordan method.

$$x + 2y + z = 3$$

$$2x + 3y + 3z = 10$$

$$3x - y + 2z = 13$$
(8)

(ii) Find the numerically largest Eigen value of $A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ and the corresponding Eigen Vector. (8)

Or

(b) (i) Solve the system of equations by using Gauss-Seidel method.

$$8x - 3y + 2z = 20$$

$$4x + 11y - z = 33$$

$$6x + 3y + 12z = 35.$$
(8)

(ii) Find the Eigen values and Eigen Vectors of the real symmetric matrix

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$
 by Jacobi's method. (8)

13. (a) (i) Find the number of students who obtain marks between 40 and 45 using Newton's formula. (8)

Marks	30-40	40-50	50-60	60-70	70-80
No. of Students	31	42	51	35	31

(ii) Estimate x when y = 20 from the following table using Lagrange's method. (8)

X	1	2	3	4
у	1	8	27	64
		_		

Or

(b) (i) Using cubic spline to the following data find Y(1.5).

x	1	2	3	4
Y	1	2	5	11

(ii) Estimate x when y = 20 from the following table using Lagrange's method (8)

Х	1	2	3	4
У	1	8	27	64

14. (a) (i) Find $\frac{dy}{dx}$ at x = 0.5 and x = 0.7 from the following data:

(ii) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by dividing into 6 equal parts using Simpson's one-third rule and three eighth rules. (8)

Or

(b) Evaluate $\int_{1}^{2} \int_{1}^{2} \frac{dxdy}{x^{2}+y^{2}}$ h=0.2, k=0.25 by both trapezoidal and Simpson's rule. (16)

15. (a) (i) Find a straight line fit of the form y = a + bx by the method of group averages for the following data. (8)

x:	0	5	10	15	20	25
y:	12	15	17	22	24	30

(8)

(8)

(ii) Fit a curve of the form $y = ax^b$ to the data.

x:	1	2	3	4	5	6
y:	1200	900	600	200	110	50

Or

(b) (i) By the method of least squares, find the best fitting straight line to the data given below. (8)

X	5	10	15	20	25
Y	15	19	23	26	30

(ii) By the method of moments, fit a straight line to the data.

X	1	2	3	4
Y	1.7	1.8	2.3	3.2

4

(8)

(8)