Reg. No.:					

Question Paper Code: 43506

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Third Semester

Electronics and Instrumentation Engineering

14UEI306 – DIGITAL ELECTRONICS

(Regulation 2014)

	Duration: Three hours	Maximum: 100 Marks
	Answer	ALL Questions
	PART A - ($10 \times 1 = 10 \text{ Marks}$
1.	The three basic logic gates are	
	(a) AND,OR and NOT gate	(b) AND,OR and NOR
	(c) NAND, OR and NOT	(d) None of the above
2.	gates are called as the universal	gates
	(a) AND and OR	(b) NAND and NOR
	(c) NOT and NOT	(d) NAND and OR
3.	The systematic reduction of logic circu	its is accomplished by
	(a) Using Boolean algebra	(b) Symbolic reduction
	(c) TTL logic	(d) Using a truth table
4.	A comparator is a special combinate	ional circuit designed primarily to compare the
	relative magnitude of nu	mbers .

(c) two binary

(d) three binary

(b) three decimal

(a) two decimal

5.	D flip-flop during the occurrence of clock the output is reset.	k pulse if, the output	_ and if,				
	(a) $D = 0$, $Q = 0$, D is set	(b) $D = 1$, $Q = 1$, $D =$	= 0				
	(c) $D = 1$, Q is set, $D = 0$	(d) None of the above	(d) None of the above				
6.	What is a major disadvantage of RAM?						
	(a) Its access speed is too slow	(b) Its matrix size	e is too big				
	(c) It is volatile	(d) High power co	onsumption				
7.	In positive logic,						
	(a) a HIGH = 1, a LOW = 0	(b) a LOW = 1 , a	(b) a LOW = 1 , a HIGH = 0				
	(c) only HIGHs are present	(d) only LOWs ar	(d) only LOWs are present				
8.	For JK flip flop with J=1, K=0, the output after clock pulse will be						
	(a) 0 (b) 1	(c) High Impedance	(d) No change				
9. I	PAL consists of a programmable arra	ay and a fixed array with	n output logic.				
	(a) NAND and NOR	(b) AND and NOR					
	(c) NAND and OR	(d) AND and OR					
10.	is the minimum time requir	red to maintain a constant vol	tage levels at the				
	excitation inputs of the flip-flop device.						
	(a) Rise time	(b) Fall time					
	(c) Setup time	(d) None of these					
	PART - B (5	x 2 = 10 Marks)					
11.	Simplify: $A + AB + \overline{A} + B$.						
12.	Write the truth table of a 4:1 multiplexer.						
13.	Define synchronous counter.						
14.	Define Glitch.						
15.	What is meant by PLA?						

PART - C (5 x 16 = 80 Marks)

16. (a) (i) Give a brief note on Weighted codes. (8)(ii) If $\overline{A}B + C\overline{D} = 0$ then. Prove that $AB + \overline{C}(\overline{A} + \overline{D}) = AB + BD + \overline{B}\overline{D} + \overline{A}\overline{C}D$. (8)Or (b) Simplify the Boolean function using tabulation method. $Y(A, B, C, D) = \sum m(1, 2, 3, 5, 9, 12, 14, 15) + \sum D(4, 8, 11).$ (16)17. (a) (i) Implement $F = (A\overline{B} + \overline{A}B)(C + \overline{D})$ using only NOR gates. (10)(ii) Implement a Half adder. (6) Or (b) (i) Discuss the 4-bit Magnitude comparator with its logic diagram. (8) (ii) Write the truth table of a three - to - eight lines decoder and construct the circuit for 3 - to - 8 lines decoder. (8) 18. (a) (i) How will you convert a D flip flop into JK flip flop? (8) (ii) Sketch a 4-bit serial in serial out shift register and draw its waveforms. (8) Or (b) Explain the operation universal shift register with logic diagram. (16)19. (a) Design an Asynchronous circuit that has two inputs x_1 and x_2 and output z. The circuit is required to give an output whenever the input sequence (0,0) (0,1) and (1,1) received but only in that order. (16)Or (b) What is a hazard? Explain the different types of hazards. Discuss in detail how hazards can be eliminated. (16)20. (a) Explain about RAM and its types. (16)Or (b) (i) With a neat sketch, explain the block diagram of PLA. (8)

(ii) Discuss in detail about EPROM and EEPROM.

(8)