
A		Reg. No. :											
		Question P	ape	r Co	ode	: 57	502	,					
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018													
	Seventh Semester												
Electronics and Instrumentation Engineering													
15UEI702 -PLC and SCADA													
(Regulation 2015)													
Dur	Duration: Three hours Maximum: 100					00 N	/lark	S					
		Answer A	LL (Ques	tions	5							
		PART A - (1	0 x 1	= 10) Ma	rks)							
1.	1. The process of converting a discrete time continuous value signal into discrete CO1-I time discrete value signal is							CO1-R					
	(a) Sampling	(b) Coding			(c) (Quan	tisat	ion			(d) A	DC
2.	2. Velocity form of digital controllers causes Controller drift when CO1- control action is absent						CO1-R						
	(a) P	(b) I			(c) F	PI					(d) D)
3.	3. The PLCs were originally designed to replace						C	202-R					
	(a) Analog controllers			(b) Microcontrollers									
	(c) Computers		(d) Hardwired Relays										
4.	In a current sinking DC	input module			•							(CO2-R
	(a) The current flows out of the input field device												
	(b) Requires that a AC s	ources be used wi	th me	echai	nical	swit	ches						
(c) The current flows out of the input module													
(d) Currents can flow in either direction at the input module													
5.	5. The SKIP instruction in PLCCO3						CO3- R						
(a) Allows a portion of the program to be bypassed when its coil is de-energised(b) Allows a portion of the program to be bypassed when its coil is enabled													
	(c) Skips the portion of the output coils												
	(d) Skip that particular F	Rung											

6.	instruction is used as a program control function.						
	(a) MCR (b) RESET (c) TIMER		(d) CNTL				
7.	motor is m	ost suitable for precision m	notion control.	CO4 -R			
	(a) Induction Motor	(b) Synchronous Motor	(c) Stepper Motor	(d) Servo Motor			
8.	To identify non-metal preferable.	objects in a conveyor _	sensor is most	CO4 -R			
	(a) Capacitive Proximity	I	(b) Inductive Proximity				
	(c) IR		(d) Ultrasonic				
9.	Line Modems used to technique to establish co	CO5- R					
	(a) Phase Shift Keying		(b) Time Shift Keying				
	(c) Frequency Shift Key	ing	(d) Coded Shift Keying				
10.	IEC60870 is an			CO5- R			
	(a) Open SCADA Proto	col	(b) Serial Cable				
	(c) Closed SCADA Prot	ocol	(d) Parallel Cable				
PART - B (5 x 2 = 10 Marks)							

11. Determine the Z-transform for e^{-at}	CO1 -R
12. Differentiate modular PLC and fixed PLC.	CO2-U
13. State the use of sequencer instructions in PLC.	CO3-U
14. List the possible inputs and outputs in elevator.	CO4-R
15. How do you communicate SCADA with PLC?	CO5-U

16. (a) (i) Determine the closed loop stability of the system shown in Figure when K = 1 and also find out the range of K for which the system is stable.

CO1-App (12)

		(ii) Comment stability for the following characteristic equation: $P(z) = z^{3} + 0.25z^{2} + z + 0.25 = 0.$	CO1-App	(4)			
	Or						
	(b)	Derive and explain the position and velocity form of digital control algorithm.	CO1-App	(16)			
17.	(a)	Draw the architecture of PLC and explain its functional blocks and also state the advantages of PLC.	CO2 -U	(16)			
Or							
	(b)	(i) Explain the various timer logics in PLC.	CO2 -U	(10)			
		(ii) Develop a ladder program to control traffic light in one direction.	CO2-Ana	(6)			
18.	(a)	List and discuss various arithmetic instructions in PLC.	CO3 -U	(16)			
		Or					
	(b)	(i) List the various compare instructions in PLC and discuss any 3 compare instructions in detail.	CO3 -U	(10)			
		(ii) Develop a ON/OFF control based ladder logic program to maintain the temperature of a tank within 1% deviation between setpoint.	CO3-Ana	(6)			
19.	(a)	With suitable diagram explain the construction and operation of reactor and also write a PLC program to monitor and control the reactor.	CO4-U	(16)			
Or							
	(b)	With suitable diagram explain the construction and operation of LPG filling system and also write a PLC program to monitor and control the reactor.	CO4 -App	(16)			
20.	(a)	Draw the architecture of SCADA. Explain various functions carried out by SCADA.	CO5- U	(16)			
	(b)	Or Explain in detail about DNP3 SCADA communication protocol.	CO5-U	(16)			