Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 37502

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Seventh Semester

Electronics and Instrumentation Engineering

01UEI702 - INSTRUMENTATION SYSTEM DESIGN

(Regulation 2013)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

- 1. Mention the application of thermistor.
- 2. Define sensitivity of a wheat stone bridge.
- 3. How the specific signal conditioner for capacitive sensors works?
- 4. How the specific signal conditioner for capacitive sensors works?
- 5. Where do we on-off control use an controlling a process?
- 6. Discuss the need for designing Two-position controller action with neutral zone.
- 7. Draw the orifice type flow meter and indicate the fluid flow.
- 8. Write a note on square root extractors.
- 9. Draw the Process and Instrumentation (PI) diagram of a flow process.
- 10. Mention the choice of temperature of a platinum RTD

PART - B (5 x
$$16 = 80 \text{ Marks}$$
)

11. (a) How the Wheatstone bridge can be balanced? Explain the balance measurement techniques in detail. (16)

	(b)	Design an instrumentation amplifier with its merits and application.	(16)
12.	(a)	Design an ac amplifier with power supply decoupling and explicate the step by design procedure with diagrams and equations.	step (16)
		Or	
	(b)	Describe the application and working of LVDT used in signal conditioning appropriate diagrams.	with (16)
13.	(a)	Explain the design and implementation of electronic PID controller.	(16)
		Or	
	(b)	Explain the operations of P, PI and PID controllers in detail. Brief the character of each controller.	istics (16)
14.	(a)	Explain the design consideration of rotameter in detail with necessary diagrams equations.	s and (16)
		Or	
	(b)	Explain the design consideration of rotameter in detail with necessary diagrams equations.	s and (16)
15.	(a)	Discuss about the instrument specification sheets for flow and pressure.	(16)
		Or	
(b)	(a)	Draw the Process Instrumentation (PI) diagrams of the following: (i) V (ii) Compressors (iii) Pumps and Turbine and (iv) Line symbols.	alves (16)