A		Reg. No. :									
	Question Paper Code: 53021										
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018											
Third Semester											
Civil Engineering											
15UMA321 – TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS											
(Common to EEE, ECE, EIE, MECH, Chemical, Biomedical and											
	Agriculture Engineering Branches)										
		(Regulat	ion 2015	5)							
Dura	Duration: Three hours Maximum: 100 Marks										
	Answer ALL Questions										
	PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$										
1.	The constant term in the Fourier series is CO1-						CO1- R				
	(a) a ₀	(b) b ₁	(c) a ₅					(d)	b ₄		
2.	The root mean square value of $f(x) = x$ in (0, 1) interval CO1					CO1- R					
	(a) 2/3	$(b)1/(3)^{1/2}$	(c) 2/	$(3)^{1/2}$				(d)4	4/5		
3.	Fourier integral of f($f(x) = 1. 0 < x < \infty$									CO2- R
	(a) 0	(b)1	(c) No	ot de	finec	1	(0	d) Ve	ery la	rge	number
4.	Give a function which	ch is self reciprocal une	der sine	trans	sforn	1					CO2- R
	(a) x	(b) x^2	(c) 1/	$(x)^{(1)}$	/2)			(d)	1/(x)) ^(3/2)	
5.	Find $z[a^{n-1}]$										CO3- R

(b) $\frac{1}{z-1}$ (c) $\frac{z^2}{z-a}$ (d) $1/a(\frac{z}{z-a})$ $(a)\frac{az}{z-1}$

	$Z^{-1}\left[\frac{z}{z+1}\right]$				
	$(a)(-1)^{n}$	(b) $(-a)^{n}$	(c) $(-t)^{n}$	$(d) (1)^{n}$	
7.	The p.d.e of $z = ax+by$	y is			CO4- R
	(a) x+y	(b) qx+py	(c) px+qy	(d) x-y	
8.	Find the P.I of $[D^2 + 4]$	$(DD']z = e^x$			CO4- R
	(a)1	(b) e^{x}	(c)0	(d) e^{x-1}	
9.	What is the constant a	a^2 in the wave equation	ı		CO5- R
	$(a) a^2 = \frac{T}{m}$	(b) $a^2 = \frac{1}{m}$	(c) $a^2 = \frac{T}{2}$	(d) $a^2 = \frac{T^2}{m}$	
10.	Governing equation of	f two dimensional stea	dy state heat equation is		CO5- R
	$(a)\frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial y^2} = 0$	(b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 1$	(c) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial y} = 0$	(d) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2}{\partial y}$	$\frac{u}{2} = 0$
		PART – B (5 x	2= 10 Marks)		
11.	Explain Dirichlet's co		CO1- R		
12.	State the Convolution		CO2- R		
13.	Define Difference equ	ations			CO3- R
14.	From the p.d.e by elin	ninating arbitrary cons	tants a and b from		CO4- R
	$z = (x + a)^{2} + (y - b)^{2}$				

15. Write all variable separable solutions of the one dimension heat equation. CO5- R

CO3- R

PART – C (5 x 16= 80Marks)

16. (a) Find the Fourier series of x^2 in $(-\pi, \pi)$. Hence prove the CO1- App (16) following

$$(a) \frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \dots = \frac{\pi^{2}}{6}$$
$$(b) \frac{1}{1^{2}} - \frac{1}{2^{2}} + \frac{1}{3^{2}} - \dots = \frac{\pi^{2}}{12}$$
$$(c) \frac{1}{1^{4}} + \frac{1}{2^{4}} + \frac{1}{3^{4}} + \dots = \frac{\pi^{4}}{90}$$

Or

(b) Determine the first two harmonic of the Fourier series for the CO1- App (16) following values.

X:	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$
Y:	1.98	1.30	1.05	1.30	-0.88	-0.25

17. (a) Find the Fourier transform of

$$f(x) = \begin{cases} 1 - |x| & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}.$$

Hence deduce the following:

$$(i)\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2}$$

$$(ii)\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt = \frac{\pi}{3}$$

$$CO2-App \qquad (4)$$

$$CO2-App \qquad (4)$$

Or

(b) Show that CO2-App (16)

 $e^{-x^2/2}$ is self reciprocal under Cosine Transform.

CO2- App (8)

18. (a) Find CO3- Ana (4)
(i)
$$Z [a^n \cos n\theta]$$

(ii) $Z [\sin n\theta]$ CO3- Ana (4)

(iii) Using convolution theorem, evaluate the inverse CO3- Ana (8)
Z - transform of
$$\frac{z^2}{(z-a)(z-b)}$$

Or

(b) Solve CO3- Ana (16) $y_{n+2} + 6 y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$, using Z - transform.

19. (a) (i) Find the singular integral of
$$z = px + qy + p^2 + pq + q^2$$
 CO4-App (8)

(ii) Solve
$$p\sqrt{x} + q\sqrt{y} = \sqrt{z}$$
 CO4-App (8)

Or

Or

- (b) Solve $(D^2 + 2DD' + D'^2)z = x^2y + e^{x-y}$. CO4- App (16)
- 20. (a) A tightly stretched flexible string has its ends fixed at x = 0 and CO5-U (16) x = ℓ. At time t = 0, the string is given a shape defined by f (x) = k x (ℓ x), where 'k' is constant and then released from rest. Find the displacement of any point 'x' of the string at any time t > 0.
 - (b) An insulated rod of length *l* has its ends A and B maintained CO5-U (16) at $\stackrel{0}{O}$ C and 100° c respectively until steady state conditions prevail. If B is suddenly reduced to 75° C and at A raised to 25° C, find the temperature at a distance x from A at time t.