1	l
r	1

Reg. No. :					
1105.10.1					

Question Paper Code: 54904

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fourth Semester

Chemical Engineering

15UCH404 – PHYSICAL CHEMISTRY

(Regulation 2015)

Dur	ation: Three hours		Ma	aximum: 100 Marks
		Answer	ALL Questions	
		PART A - ($10 \times 1 = 10 \text{ Marks}$	
1.	When one of productive reverse reaction i	CO1- R		
	(a) Forward	(b) Backward	(c) in equilibrium	(d) both a & b
2.	In a chemical reac remains constant for		tion of one of the reactant	CO1- R
	(a) pseudo order	(b) first order	(c) zero order	(d) fractional order
3.	An increase in equivolent dilution is mainly du		of a strong electrolyte with	CO2- R
	(a) Increace in ionic	mobility of ions	(b) Increase in number	of ions
	(c) both a& b		(d) None of these	
4.	Conductometric me solutions.	thods can be used	for the analysis of	CO2- R
	(a) concentrated	(b) colored	(c) non-colored colloidal	(d) brine
5.	The three phases requilibrium at	•	d and gas will coexist in	CO3- R
	(a) triple	(b) reduced	(c) stationary	(d) crossover
6.	The important factor	r influencing the sol	ubility of a gas in liquid is	CO3- R

(c) surface tension

(d) pressure

(b) density

(a) viscosity

7.	Idea	l solutions obey				CO4- R	
	(a) Raoult's law		(b) The distribution law				
	(c) (Oswald's law		(d) All of these			
8.		en one of the sub- lyst for that reaction		uring the reaction acts as a d as		CO4- R	
	(a) n	negative catalysis	(b) autocatalysis	(c) promoters	(d) accelerate	ors	
9.	Whi	ch of the followin	g can act as a pro	tective colloid?		CO5 R	
	(a) (Gelatin	(b) Siliga gel	(c) Oil in water mulsion	(d) All of the	se	
10.	Whi	ch of the followin	g is not an examp	le of colloid?		CO5- R	
	(a) N	Milk	(b) Paint	(c) Blood	(d) Isotonic s	olution	
			PART – B	(5 x 2= 10Marks)			
11.	Writ	te any two differer	nce between mole	cularity and order of the reacti	on	CO1- R	
12.							
13.	State	e condense phase	rule.			CO3- R	
14.	Wha	at is heterogeneous	s catalysis? Give	examples.		CO4- R	
15.	Justi	ify the use of gelat		CO5- R			
			PART –	C (5 x 16= 80Marks)			
16.	(a)	(i) What is meant First order k	-	netics? Derive the kinetics of	CO1- U	(10)	
		(ii) Explain the ex Arrhenius equ	_	re on reaction rate using	CO1- U	(6)	
			Or				
	(b)	suitable exam	ple.	d in chain reaction with	CO1-U	(8)	
		(ii) Discuss the d taking place i		te constant for the reactions	CO1-U	(8)	
17.	(a)	State kohlrausch applications in de	-	endent migration. Discuss i	ts CO2 -U	(16)	
	<i>(</i> 1.)	(') D ('' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Or		002 11		
	(b)	-	•	d Equivalent Conductivity.	CO2- U	(6)	
		for strong ele		of the Debye-Huckel Theory	CO2- U	(10)	

18.	(a)	Explain the phase diagram of two component system with suitable example .	CO3-U	(16)
		Or		
	(b)	(i) State distribution law. Explain the applications of distribution law.	CO3- U	(8)
		(ii) State Henry's law and Raoult's law. Discuss its applications in gas – liquid system.	CO3- U	(8)
19.	(a)	(i) Explain the mechanism involved in the two classes of adsorption processes.	CO4- U	(6)
		(ii) Discuss the calculation of adsorption isotherm parameters using: Freundlich equation and Langmuir equation. Or	CO4- U	(10)
	(b)	(i) Derive the Michaelis - Menten equation for an enzyme catalyzed reactions.	CO4-App	(12)
		(ii) Define catalysis. Classify the various types of catalysis with suitable examples	CO4-App	(4)
20.	(a)	Discuss the preparation of colloidal solutions by the following methods:	CO5- U	(16)
		(i) Mechanical dispersion,		
		(ii) Peptization		
		(iii) double decomposition.		
		Or		
	(b)	Discuss briefly the kinetics of addition and condensation polymerization	CO5- U	(16)