Reg. No. :

Question Paper Code: 54902

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fourth Semester

Chemical Engineering

15UCH402 - CHEMICAL PROCESS CALCULATIONS

(Regulation 2015)

(Necessary Data book must be provided)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1.	The number of moles of solute dissolved in one kilogram of Solvent is called as				
	(a) normality	(b) molality	(c) mole fraction	(d) molarity	
2.	In an ideal gas mixture, the total pressure is the sum of the partial CO1- R pressures exerted by each component. This is the statement of law.				
	(a) Dalton's	(b) Amagat's	(c) Vanderwaal's	(d) Joule - Thomson	
3.	In process industries, purging of recycle stream is done CO2- R				
	(a) to increase the rate	products			
	(c) to limit the inert concentration (d) to maintain unifo			temperature	
4.	A limiting component decides the in the reactions. CO				
	(a) yield	(b) conversion	(c) stoichiometric number	(d) temperature	
5.	When the partial press vapor pressure of the s	CO3- R			
	(a) 0%	(b) 50%	(c) 30%	(d) 100%	

Sling psychrometer is used to measure C							
(a) wet – bulb temperature		(b) dew point					
(c) humid volume		(d) humid heat					
144 grams of C_5H_{12} produced, what is t	C_5H_{12} is burnt with two moles O_2 and 1moleof CO_2 is CO4- R at is the % of excess O_2 ?						
(a) 25%	(b) 50%	(c) 75%	(d) 100%				
The gas which is present in very low concentration in the flue CO4-gases is							
(a) CO ₂	(b) N ₂	(c) SO ₂	(d) SO ₃				
The standard heat of	of reaction is measure	d at	CO5- R				
(a) 100°C and 100 atm		(b) 25° C and 1 atm					
(c) 25° C and 10 atr	n	(d) 0° C and 1 atm					
The heat of reaction depends mainly on							
(a) temperature	(b) reaction time	(c) volume of system	(d) rate constant				
PART - B (5 x 2 = 10 Marks)							
. Write the unit of solubility and also find the molar mass of $KMnO_4$							
What is recycling operations? Why it is carried out?							
3. From the following data's calculate the molar humidity and absolute CO3- R humidity of air-water vapor mixture. At 25° C, partial pressure of watervapor in the mixture = 2.0624 kPa and total pressure of the system = 100 kPa.							
What is theoretical air and excess air?							
Define standard heat of Reaction and Combustion							
	PART –	C (5 x 16= 80Marks)					
 (a) (i) An aqueous solution of acetic acid of 35% concentration (by CO1- Appmass) has density 1.04 kg/lit at 25°C. Find the molarity, normality and molality of the solution. 							
(ii) Explain t molarity, mol	he calculation of fol ality, normality and co	lowing for aqueous soluti oncentration in gm/liter.	ons: CO1- App (8)				
	Sling psychrometer (a) wet – bulb temp (c) humid volume 144grams of C_5H_{12} produced, what is the (a) 25% The gas which is gases is (a) CO ₂ The standard heat of (a) 100°C and 100 for (c) 25°C and 10 atresson (a) temperature Write the unit of soce What is recycling of From the following humidity of air-verse watervapor in the resson 100 kPa. What is theoretical Define standard heat (a) (i) An aqueou mass) has den and molality of (ii) Explain the molarity, molarst	Sling psychrometer is used to measure (a) wet – bulb temperature (c) humid volume 144grams of C_5H_{12} is burnt with two maproduced, what is the % of excess O_2 (a) 25% (b) 50% The gas which is present in very low gases is (a) CO_2 (b) N_2 The standard heat of reaction is measure (a) $100^{\circ}C$ and 100 atm (c) $25^{\circ}C$ and 10 atm The heat of reaction depends mainly on (a) temperature (b) reaction time PART – B Write the unit of solubility and also find What is recycling operations? Why it is From the following data's calculate humidity of air-water vapor mixtur watervapor in the mixture = 2.0624 kP 100 kPa. What is theoretical air and excess air? Define standard heat of Reaction and Constant (a) (i) An aqueous solution of acetic mass) has density 1.04 kg/lit at 25° and molality of the solution. (ii) Explain the calculation of foll molarity, molality, normality and c	Sling psychrometer is used to measure				

Or

- (b) Cracked gas from a petroleum refinery has the following CO1- App (16) composition by volume: $CH_4 = 45$, $C_2H_6 = 10$, $C_2H_4 = 25$, $C_3H_8 = 7$, $C_3H_6 = 8$ and $C_4H_{10} = 5$. Find average molar mass of the gas mixture, composition by mass and specific gravity of the gas mixture.
- 17. (a) A saturated solution of MgSO₄ at 353 K (80°C) is cooled to 303 CO2- App (16) K (30°C) in a crystallizer. During cooling, mass equivalent to 4% solution is lost by evaporation of water. Calculate the quantity of the original saturated solution to be fed to the crystallizer per 1000 kg crystals of MgSO₄.7H₂O. The Solubility of MgSO₄ at 303 K (30°C) and 353 K (80°C) are 40.8 and 64.2 kg per 100 kg water respectively. The molar mass of MgSO₄ = 120.3 gmole⁻¹.

Or

- (b) It is required to make 1000 kg mixed acid containing 60% H₂SO₄, CO2- Ana (16) 32% HNO₃ and 8% water by blending the spent acid (containing 11.3% HNO₃, 44.4% H₂SO₄, 44.3% H₂O), an aqueous acid 90% HNO₃ and an aqueous 98% H₂SO₄. All percentages are by mass. Calculate the quantities of each of the three acids required for blending.
- 18. (a) The humidity of air at 30° C (86° F) and a total pressure of 750 CO3- Ana (16) mmHg absolute (100 kPa) is 0.0055. calculate (i) the percent relative humidity (ii) the molal humidity and (iii) the partial pressure of the water vapor in the air. Data from the steam tables are: partial pressure of the water vapor in the air water vapor mixture saturated at 30° C = 31.8 mmHg = 4.242 kPa.

Or

(b) Describe the following terms in humidification operations: humid CO3 -U (16) heat, humid volume, dry bulb temperature and wet bulb temperature.

19. (a) The flue gas from an industrial furnace has the following CO4- App (16) composition by volume $CO_2 = 11.73\%$, CO = 0.2%, $N_2 = 0.09\%$, $O_2 = 6.81\%$ and $N_2 = 81.17\%$. Calculate the percentage excess air employed in the combustion if the loss of carbon in clinker and ash is 1% of the fuel used and the fuel has the following composition by weight: C = 74%, $H_2 = 5\%$, $O_2 = 5\%$, $N_2 = 1\%$, S = 1%, $H_2O = 9\%$ and ash = 5%.

Or

- (b) Describe the calculation of heat capacity of gases, solids and CO4-U (16) liquids.
- 20. (a) A chlorinated diphenyl is heated from 313K to 533K in an CO5-App (16) indirectly fired heater at the rate of 4000kg/h. Calculate the heat required to be added to the fluid in the heater. The heat capacity of the fluid in this temperature range is given by equation given below $C = 0.7511+1.465 \times 10^{-3} T (kJ/kg.K)$.

Or

(b) (i) Discuss the effect of temperature and pressure on heat of CO5-U (7) reaction.

(ii) Explain the applications of energy balance equation without CO5-U (9) chemical reaction for: closed system, open system with heat transfer and open – steady state flow system.