A		Reg. No. :										
Ouestion Paper Code: 54901												
B.E./B.Tech. DEGREE EXAMINATION, NOV 2018												
Fourth Semester												
Chemical Engineering												
15UCH401- CHEMICAL ENGINEERING THERMODYNAMICS-I												
(Regulation 2015)												
				,								
Dur	ation: Three hours	Maximum: 100 Marks Answer ALL Questions										
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$												
1.	Which is the following i	s an intensive property						CO1- R				
	(a) Internal Energy (b) Enthalpy (c) Enthalpy) Dei	ensity (d) Volume						
2.	Properties of substances like pressure, temperature and density, in CO1- thermo dynamic coordinates are								1- R			
	(a) path functions (b) point functions	(c) c	yclic	func	tions			(d)r	eal fi	uncti	ons
3.	Value of R gas constant	in KJ/ kg mole. K i	S								CO	2- R
	(a) 846	(b) 8314.4	(c)	0.846					(d) 8	.314		
4.	For an ideal gas, Z has the value										CO	2- R
	(a) 0 (i	a) 0 (b) 2 (c) 1 (d) in							nfinity			
5.	Carnot cycle efficiency is maximum when							CO	93- R			
	(a) initial temperature is 0°K (b) final temperature							ture	is 0°	K		
	(c) difference between initial and final temperature is 0° K (d) final temperat							ture	is 0°	С		
6.	6. The door of a running refrigerator inside a room was left open. Which of the following statements is correct?(a) The room will be cooled to the temperature inside the refrigerator.							CO	93- R			
	(b) The room will be cooled very slightly.											
(c) The room will be gradually warmed up.												
	(d) The temperature of the air in room will remain unaffected.											

7.	Which of the following plots is called Mollie	er diagram	CO4- R						
	(a) H-S diagram	(b) H-P diagram							
	(c) T-S diagram	(d) None of these							
8.	The Gibbs-Duhem equation is given by		CO4- R						
	(a) $SdT + Vdp - \Sigma(n)^*d$ (molal chemical pote	ential)							
	(b) $-SdT + Vdp - \Sigma(n)^*d$ (molal chemical potential)								
	(c) $SdT + Vdp - \Sigma(n)^*d$ (molal chemical potential)								
	(d) $-SdT - Vdp - \Sigma(n)^*d$ (molal chemical potential)								
9.	Steam power plant is based on		CO5- R						
	(a) Diesel Cycle	(b) Brayton Cycle							
	(c) Rankine cycle	(d) Atkinson Cycle							
10.	For same compression ratio and for same hea	at added	CO5- R						
	(a) Otto cycle is more efficient than Diesel cycle								
	(b) Diesel cycle is more efficient than Otto cycle								
	(c) efficiency depends on other factors								
	(d) both Otto and Diesel cycles are equally efficient								
	PART – B (5 x	2= 10Marks)							
11.	Quote Zero th law of Thermodynamics.		CO1- R						
12.	What is compressibility factor?		CO2- R						
13.	What are the assumptions made on heat engine? State Carnot theorem.								
14.	State the importance of clausius clapeyron equation.								
15.	If an aeroplane goes to higher altitudes maintaining the same speed, the Mach number will remain constant. Say true or false.								
PART – C (5 x 16= 80Marks)									
16.	(a) Write a detailed note on the reversible a Also comment on the statement that '	and irreversible processes. CO1- Ap	p (16)						

irreversible process cannot be determined" with the help of quasi-equilibrium process and rapid processes.

Or

- (b) Properties of a closed systems change according to the relation CO1- App (16) p.v= 3.0 (p= bar, v= m³)Calculate the work done when the pressure is increased from 1.5 to 7.5 bar.
- 17. (a) A vessel of volume 0.28m³ contains 10 kg of air at 320 k. CO2- App (16) Determine the pressure exerted by the air using a) perfect gas equation b) Vander walls equation c) Generalized compressibility chart.(Take critical temperature of air as 132.8 k and critical pressure of air as 37.7 bar.

Or

- (b) Describe the importance of PVT behavior of fluids and also CO2- Ana (16) describe the mathematical representation in detail.
- 18. (a) From basic principles and first law of thermodynamics, derive the CO3- Ana (16) steady flow energy balance for an open system?

Or

- (b) 0.5m³ of air at 5 bar pressure and 100°C is in a closed system CO3- Ana (16) cylinder undergoes a reversible adiabatic expansion till the pressure falls to 1 bar. The gas is expanded at constant pressure till internal energy increases by 1000kJ.Calculate
 - (i) the total work done

(ii) heat transfer

(iii) the index of expansion, if the above process are replaced by a single reversible polytropic process giving the same work between the same initial and final states.

19. (a) Identify different types of thermodynamic diagrams. Explain any CO4-App (16) one of them.

Or

- (b) Evaluate the thermodynamic properties from an equation of state. CO4 App (16)
- 20. (a) Explain the effect of Mach number on compressibility. Calculate CO5-U (16) the percentage deviation due to the assumption of incompressibility when Mach number is equal to 0.5 and specific heat ratio is 1.4.

Or

(b) Carbon dioxide at 1 bar and 300 K is is to be compressed CO5-U (16) (adiabatically) to a pressure of 10 bar in a single- stage compressor at a rate of 100 m³ / h. Assuming that CO₂ behaves as an ideal gas, calculate the temperature of the gas after of the gas after compression and the work required. Take $\gamma = 1.3$.