A		Reg. No. :								
B.E./B.Tech. DEGREE EXAMINATION, NOV 2018										
Fifth Semester										
Chemical Engineering										
15UCH503-HEAT TRANSFER										
(Use of HMT data book is permitted)										
(Regulation 2015)										
Duration: Three hours Maximum: 100 Marks Answer ALL Questions PART A - (10 x 1 = 10 Marks)										
1.	Which of the following metal has high thermal conductivity value? CO1- R									
	(a) Copper	(b) Steel	(c) Aluminum	(d) Silver						
2.	The efficiency of the	The efficiency of the fin is								
	(a) Q _{max} /Q	(b) Q_{max}/Q_{min}	(c) Q_{min}/Q_{act}	(d) Q_{act}/Q_{max}						
3.	The fluid flow in which the fluid particles in one layer do not mix with the fluid particles in the other layer is called as CO2- R									
	(a) Laminar flow	(b) Turbulent flow	(c) Layer flow	(d) Steady flow						
4.	The ratio of the thickness of thermal boundary layer to the thickness $CO2-U$ of hydrodynamic boundary layer is equal to (Prandtl number) ⁿ , where n is equal to									
	(a) -1/3	(b) -2/3	(c) 1	(d) -1						
5.	Heat transfer without	medium is known as		CO3- R						
	(a) Conduction	(b) Convection	(c) Free convection	(d) Radiation						
6.	The product of maximum wavelength and absolute temperature is CO3- R equal to constant is known as									
	(a) Wien's Law	(b) Stefan's Law	(c) Planck's Law	(d) Prevost Theory						

7.	occur when a liquid is forced through a channel which is CO4- R maintained at a temperature higher than the saturation temperature of the liquid.								
	(a) l	Film boiling	(b) Nucleate boiling	(c) Pool boiling	(d) Flow boili	ng			
8.		heat transfer co- for drop wise con		CO4- R					
	(a) Greater than (b) Lower than (c) Half				(d) Is same as				
9.	LMTD in case of counter flow heat exchanger as compare parallel flow heat exchanger is					CO5- U			
				(b) Lower					
				(d) Depends on the area	epends on the area of heat exchanger				
10.	Automobile radiator is a heat exchanger of					CO5- U			
	(a) Counter flow type			(b) Parallel flow type					
	(c) Regenerator type		(d) Cross flow type						
PART - B (5 x 2 = 10 Marks)									
11.	Stat	e Fourier's law of	CO1- R						
12.	Wri	te the significance	CO2- R						
13.	Def	ine Emissivity of	CO3- R						
14.	Differentiate between pool boiling and flow boiling.				CO4- R				
15.	What is fouling factor ?CO5-1PART - C (5 x 16= 80 Marks)								
16.	(a)	a) Derive the General heat conduction equation is ordinates.		ation in Cartesian Co-	CO1 U	(16)			
	Or								
	 (b) A pipe carrying steam at 230°C has an internal diameter of 12 cm CO1- App (16) and the pipe thickness is 7.5 mm. The conductivity of the pipe material is 49 W/mK. The convective heat transfer coefficient on the inside is 85 W/m²K. The pipe is insulated by two layers of insulation one of 5 cm thickness of conductivity 0.15 W/mK and 								

55903

over it another 5 cm thickness of conductivity 0.48 W/mK. The outside is exposed to air at 35°C with a convection coefficient of 18 W/m²K. Determine the heat loss for 5 m length. Also

determine the interface temperatures.

17. (a) In a process, water at 30°C flows over a plate maintained at 10°C CO2- App (16) with a freestream velocity of 0.3 m/s. Determine the hydrodynamic boundary layer thickness, thermal boundary layer thickness, local and average values of friction coefficient, heat transfer coefficient.

Or

- (b) Derive a correlation for heat transfer coefficient using CO2-U (16) dimensional analysis method for free convection equation.
- 18. (a) (i) Define absorptivity, reflectivity and transmissivity.CO3- U(6)(ii) State and prove Kirchoff's law.CO3- U(10)

Or

- (b) Emissivities of two large parallel plates maintained at 800° C and CO3- Ana (16) 300° C are 0.3 and 0.5 respectively. Find the net radiant heat exchange per square meter of the plates. If a polished aluminum shield ($\varepsilon = 0.05$) is placed between them. Find the percentage of reduction in heat transfer.
- 19. (a) Explain in detail about the construction and working principle of CO4-U (16) different types of condensers.

Or

- (b) With neat sketches, explain the working of different types of CO4-U (16) evaporators.
- 20. (a) With neat sketches. explain the classification of heat exchangers. CO5- U (16)

Or F

(b) Determine the area required in parallel flow heat exchanger to CO5- App (16) cool oil from 60°C to 30°C using water available at 20°C. The outlet temperature of the water is 26°C. The rate of flow of oil is 10 kg/s. The specific heat of the oil is 2200 J/kg K. The overall heat transfer coefficient U = 300 W/m² K. Compare the area required for a counter flow exchanger.