Reg. No. :					

Question Paper Code: 59903

B.E./B.Tech. DEGREE EXAMINATION, NOV 2018

Elective

Chemical Engineering

15UCH903 - PETROLEUM REFINERY ENGINEERING

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1.	C_nH_{2n} is the general formula for CO1-R						
	(a) Olefins	(b) Naphthenes	(c) Both (a) and (b)	(d) Neither (a) nor (b)			
2.	Carbon percentage (by weight) in crude petroleum may be about CO1						
	(a) 65 (b) 75		(c) 85	(d) 95			
3.	Which of the following fractions of a crude oil will have theCO2- Rmaximum gravity API (i.e. °API) ?						
	(a) Atmospheric gas of	oil (b) Diesel	(c) Gasoline	(d) Vacuum gas oil			
4.	Flash point of atmospheric distillation residue is determined by CO2 apparates.						
	(a) Abel.		(b) Cleveland (open cup type)				
	(c) Pensky-Martens (d	closed cup type).	(d) none of these.				
5.	In catalytic cracking,	the		CO3-R			
	(a) Gasoline obtained has a very low octane number						
	(b) Pressure & temperature is very high						
	(c) Gasoline obtained has very high aromatic content						
	(d) Gasoline obtained has very high amount of gum						

6.	Pressure & temperature maintained in catalytic cracking is about							
	(a) 2	2 atm & 500°C	(b) 10 atm & 500°C	(c) 30 atm & 200°C	(d) 50 atm a	& 750°C		
7.	Solvent used in duo-sol extraction for lube oil upgradation is a mixture of					CO4- R		
	(a) Propane & liquid sulphur dioxide.			(b) Methyl ethyl ketone & glycol.				
	(c) Phenol & furfural			(d) Propane & phenol-cresol mixture.				
8.	Whi	ich of the followin	g tests is not done for	transformer oil ? CO4- R				
	(a) Copper strip corrosion test.			(b) Flash point and acid value				
	(c) Aniline point			(d) Dielectric strength				
9.	Pour point and freezing point is equal for					CO5- R		
	(a) l	Diesel	(b) Water	(c) Petrol	(d) Crude petroleum			
10.	Which of the following has maximum hydrogen/carbon ratio (by CO5- I weight)?							
	(a) l	(a) Naphtha (b) Gasoline (c) Diesel (d) Fuel oi						
	$PART - B (5 \times 2 = 10 \text{ Marks})$							
11.	List the important products obtained from petroleum refinery. CO1- R							
12.								
13.	Recall the meaning of latent heat of vaporisation and give its formula CO3- R					CO3- R		
14.	. Define softening point and penetration index.					CO4- R		
15.	List out any four pollution causing gases in refineries					CO5- R		
			PART - C (5)	x 16= 80 Marks)				
16.	(a)	Discuss about va	rious organic theories	in petroleum formation	. CO1-U	(16)		
			Or					
	(b)	What are the var about their prope	ious compositions of p erties?	etroleum and discuss	CO1-U	(16)		
17.	(a) Enumerate the important test methods for LPG and gasoline CO2-U Or					(16)		
	(b)	What are the diff		gasoline and diesel oil	s CO2-U	(16)		
			2					

18. (a) With a neat flow sheet explain the principle and working of CO3-U (16) Visbreaking process.

Or

- (b) Describe the houdry fixed bed catalytic cracking process with a CO3-U (16) neat diagram.
- 19. (a) What is MEROX Sweetening process. Explain the treatment CO4-U (16) process of MEROX sweetening for treating LPG, gasolines and kerosenes.

Or

- (b) With a neat flow sheet describe the principle and working of CO4- Ana (16) Furfural extraction process for treating crudes.
- 20. (a) Derive the basic material and energy balance equations involved CO5-U (16) in petroleum refinery operations.

Or

(b) Explain the various sources and causes of pollution in refineries. CO5- U (16)
Enumerate any three pollution control techniques used in refinery operations.