Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 33001

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Third Semester

Civil Engineering

01UMA321 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to ALL Branches)

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 2 = 20 \text{ Marks})$

- 1. Find the constant term in the Fourier series corresponding to $f(x) = \sqrt{1 \cos x}$ expressed in the interval $(-\pi, \pi)$.
- 2. State the conditions for f(x) to have Fourier series expansion.
- 3. Find the Fourier cosine transform of e^{-2x} .
- 4. Find the Fourier transform of $f(x) = \begin{cases} 1 & |x| \le 1 \\ 0 & |x| > 1 \end{cases}$.
- 5. Find the Z-transform of a^n .
- 6. Write the formula for $Z^{-1}[F(z)]$ using Cauchy's residue theorem.
- 7. State initial and final value theorems on z transform.

8. What does a^2 represent in the equation $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$?

9. Write down the diagonal five point formula in Laplace equation.

10. State the diagonal five point formula to solve the equation $u_{xx} + u_{yy} = 0$.

PART - B ($5 \times 16 = 80$ Marks)

11. (a) (i) Find the Fourier series expansion of f(x) = x² + x in (-2, 2). Hence find the sum of the series ¹/_{1²} + ¹/_{2²} + ¹/_{3²} + ... ∞ (8)
(ii) Find the Fourier series expansion of the function f(x) = {0 : -π ≤ x ≤ 0 / sinx : 0 ≤ x ≤ π}

Or

- (b) (i) Find the Half range cosine series for y = x in (0, l) and hence show that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots \infty .$ (8)
 - (ii) Compute the first two harmonics of the Fourier series of f(x) given by (8)

x	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
у	0.8	0.6	0.4	0.7	0.9	1.1	0.8

12. (a) Find the Fourier cosine and sine transform of $e^{-\alpha x}$, a > 0 and hence evaluate $\int_{0}^{\infty} \frac{dx}{\left(a^{2} + x^{2}\right)^{2}} \text{ and } \int_{0}^{\infty} \frac{x^{2}}{\left(a^{2} + x^{2}\right)^{2}} dx \qquad (16)$

Or

(b) (i) Find the Fourier transform of $f(x) = \begin{cases} 1 - |x| &: |x| < 1 \\ 0 &: otherwise \end{cases}$ and hence find the value of $\int_0^\infty \frac{\sin^4 t}{t^4} dt$ (8)

(ii) Find the Fourier cosine transform of e^{-x^2} and hence find the Fourier sine transform of $x e^{-x^2}$. (8)

13. (a) Find the inverse z - transform of
$$\frac{z^2}{(z-a)(z-b)}$$
 using convolution theorem. (16)

Or

(8)

(b) (i) State and prove initial and final value theorem on Z- transform. (8)

(ii) Find
$$Z^{-1}\left[\frac{z(z^2-z+2)}{(z+1)(z-1)^2}\right]$$
 by using method of Partial fraction. (8)

14. (a) The ends A and B of a rod l cm long have the temperature at $30^{\circ}c$ and $80^{\circ}c$ until steady state prevails. The temperature of the ends is then changed to $40^{\circ}c$ and $60^{\circ}c$ respectively. Find the temperature distribution in the rod at any time. (16)

Or

- (b) A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y = 3(lx x^2)$ from which it is released at time t = 0. Find the displacement of any point on the string at a distance of x from one end at any time t. (16)
- 15. (a) Solve numerically $4u_{xx} = u_{u}$ with the boundary conditions u(0,t) = 0, u(4,t) = 0 and the initial conditions $u_{t}(x,0) = 0$ and u(x,0) = x (4-x) taking h = 1 up to 4 time steps. (16)

Or

(b) Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides x = 0, y = 0, x = 3, y = 3 with u = 0 on the boundary and mesh length 1 unit. (16)

#