4		7
1	•	
٦		

Reg. No.:										
-----------	--	--	--	--	--	--	--	--	--	--

Question Paper Code:53202

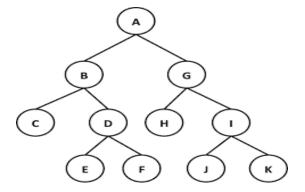
B.E./B.Tech. DEGREE EXAMINATION, NOV 2018

		Inira Se	emester				
Computer Science Engineering							
	15UCS302 -DATA STRUCTURES						
		(Regulati	on 2015)				
Dur	ation: Three hours			aximum: 100 M	1arks		
		Answer ALI	L Questions				
		PART A - (5 x	1 = 5 Marks				
1.	The number of ed of the tr	ges from the root to	o the node is calle	d	CO1- U		
	(a) Height	(b) Depth	(c) Length	(d) Branch			
2.	What are the worst c search tree?	ase and average case c	omplexities of a binar	у	CO2- R		
	(a) $O(n)$, $O(n)$	(b)O(logn), O(logn)	(c)O(logn), O(n)	(d) O(n), O(le	ogn)		
3.	In a max-heap, element with the greatest key is always in CO3-1				CO3- R		
	(a) Leaf node(c) Root node		(b) First node of left(d) First node of right				
4.	What is a hash functi	on?			CO4- R		
	(a) A function has allocated memory to keys						
	(b) A function that computes the location of the key in the array						
	(c) A function that creates an array						
	(d) A function that cr	eates a storage					
5.	What is the number of vertices?	of edges present in a co	omplete graph having	n	CO5- R		
	(a) (n*(n+1))/2		(b) (n*(n-1))/2				
(c) n (d) Information given is insufficient							

PART - B (5 x 3= 15Marks)

Define height and depth of tree.
 List the various processer performed in binary search tree.
 Define Huffman tree.
 CO2- R
 Define Huffman tree.

9. Discuss the need for extendible hashing. CO4- R


10. Differentiate in degree and out degree in graph. CO5- R

PART - C (5 x 16= 80Marks)

- 11. (a) (i) Explain different methods of binary tree representation. CO1- U (12)
 - (ii) Write short notes on leaf and Non- leaf nodes. CO1- U (4)

Or

(b) (i) Give the in order, preorder and post order sequences for the CO1- App given tree. (8)

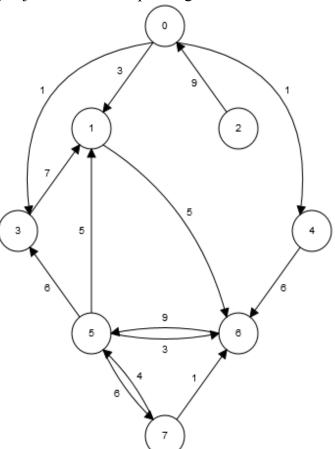
- (ii) Summarize the concept of threaded binary tree. CO1-U (8)
- 12. (a) Illustrate the operations of binary search tree with an example. CO2-U (16)
 Or
 - (b) Define balance factor. Explain the types of rotations in AVL CO2-U tree with suitable example. (16)
- 13. (a) Describe about heap trees with an example. CO3-U (16)

Or

(b) i) Build a Huffman tree from the following frequency table: CO3 App (10)

A	.20
В	.04
С	.07
D	.11
Е	.32
F	.06
G	.05
Н	.15

(ii) Write short notes on game tree


- CO3-U (6)
- 14. (a) What is meant by hashing and rehashing? Explain how hash CO4-U (16) clashes are resolved by
 - (i) Open addressing method
 - (ii) Hash table reordering method

Or

- (b) (i) Draw the 11-item hash table resulting from hashing the CO4- App keys 12,44,13,88,23,94,11,39,20,16 and 5 using the hash function h(i) = (2i+5) mod 11.
 - (ii) Load the keys 23,13,21,14,7,8 and 15 in a hash table of CO4- App size 7 using separate chaining with a hash function h(key)= key %7.
- 15. (a) Define minimum spanning tree. Explain any two algorithms CO5- App for finding the minimum spanning tree with an example. (16)

Or

(b) Find out the shortest path from vertex '0' to all other vertices CO5-App using Dijkstra's shortest path algorithm. (16)

