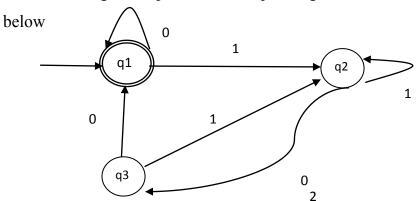
С		Reg. No. :				
Question Paper Code: 55204						
B.E./B.Tech. DEGREE EXAMINATION, NOV 2018						
Fifth Semester						
Computer Science and Engineering						
15UCS504- THEORY OF COMPUTATION						
	(Regulation 2015)					
Duration: Three hours Maximum: 100 Marks Answer ALL Questions						
PART A - $(5 \times 1 = 5 \text{ Marks})$						
1.	Finite automata require	minimum numbe	er of stacks. CO1- R			
	(a) 1	(b) 0	(c) 2 (d) None of the mentioned			
2.	. Which of the following is NOT the set of regular expression CO2- U					
	$R = (ab + abb)^* bbab)$					
	(a) ababbbbab	(b) abbbab	(c) ababbabbab (d) abababab			
3.	3. Which of the expression is appropriate? For production p: a->b where CO3-					
	$a \in V$ and $b \in$					
	(a) V	(b) S	(c) $(V+\Sigma)^*$ (d) $V+\Sigma$			
4.	4. Which of the following pairs have DIFFERENT expressive power? CO4- R					
	(a) Deterministic finite automata(DFA) and Non-deterministic finite automata(NFA)					
	(b) Deterministic push down automata (DPDA) and Non-deterministic push down automata					
	(NPDA)					
	(c) Deterministic single-tape Turing machine and Non-deterministic single-tape Turing					
	machine					
	(d) Single-tape Turing machine and multi-tape Turing machine					

- 5 Which of the following is not true about RASP?
 - (a) Binary search can be performed more quickly using RASP than a turing machine
 - (b) Stores its program in memory external to its state machines instructions
 - (c) Has infinite number of distinguishable, unbounded registers
 - (d) Binary search can be performed less quickly using RASP than a Turing machine

 $PART - B (5 \times 3 = 15 Marks)$

6.	Differentiate NFA and DFA	CO1- U
7.	Differentiate L^* and L^+	CO2- U
8.	. What is (a) Derivation (b) Derivation/parse tree (c) Subtree	
9.	What is the difference between an Alphabet and an element of a set? Whether	CO4- R
	Alphabet is an element of a set or it is a set itself?	
10.	What are the techniques used for Turing machine construction?	CO5- R
	PART – C (5 x 16= 80 Marks)	
		(4.6)


11. (a) If L is accepted by an NFA with ε -transition then show that L is CO1-U (16) accepted by an NFA without ε -transition.

Or

(b) Construct a DFA equivalent to the NFA defined by ({p,q,r,s}, {0,1}, CO1- App (16) delta, p, {s}), where delta is defined by the chart below.

δ	0	1
р	{p,q}	{ p }
q	{ r }	{ r }
r	{ s }	-
S	{ s }	{ s }

12. (a) Construct a regular expression corresponding to the automata given CO2- App (16)

Or

(b) Construct min-state DFA for the regular expression (a/b)*abb. CO2- App (16)

13. (a) (i) Give a detailed description of ambiguity in Context free grammar? CO3-U (8) Check whether the grammar G with production rules - X → X+X | X*X |X| a is ambiguous or not.
(ii) Write the grammar for the language L={ aⁿ b²ⁿ / n≥ 1}. CO3-App (8)

- Or
- (b) Convert the following Context Free Grammar to Chomsky Normal CO3-App (16) Form?
 - $S \rightarrow ASB$
 - $A \rightarrow aAS|a|\epsilon$
 - $B \to SbS|A|bb$

14. (a) (i) Construct a PDA that accepts $L = \{ ww^R | w = (a+b)^* \}$ CO4-App (8) (ii) Construct PDA for the grammar s→ asb/ab and validate the string CO4-App (8) aabb.

Or

- (b) Show the equivalence of PDA by empty stack and PDA by final state. CO4-U (16)
- 15. (a) Design a Turing Machine that reads a string representing a binary CO5-App (16) number and erases all leading 0's in the string. However, if the string comprises of only 0's, it keeps one 0.
 Or
 - (b) Draw a Turing machine which multiplies two numbers CO5-App (16)