Reg. No. :											
------------	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 45204

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fifth Semester

Computer Science and Engineering

14UCS504 - THEORY OF COMPUTATION

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1. Any NFA can be converted to a DFA

(a) always	(b) never
(c) depending on the NFA	(d) depending on the language of NFA

- 2. What is the minimum number of states in a DFA that recognizes the set of all binary strings which contains four consecutive 1's?
 - (a) 6 (b) 5 (c) 4 (d) 3
- 3. The string 1101 does not belong to the set represented by

(a) 110*(0+1)	(b) 1(0+1)*101
(c) (10)*(01)*(00+11)	(d) ((11)*+01)*

- 4. Pumping lemma is generally used for proving
 - (a) A given grammar is regular
 - (b) A given grammar is not regular
 - (c) Whether two given regular expressions are equivalent or not
 - (d) None of these
- 5. How many tuples are needed to represent an instantaneous description of a PDA?

(a) 1 (b) 2 (c) 3 (d) 4

6.	The language $L = \{0^m \ l^m / m \ge l\}$ is a	
	(a) regular language	(b) context free language
	(c) both (a) and (b)	(d) none of these

- 7. While converting the context free grammar into Greibach normal form, which of the following is not necessary?
 - (a) elimination of null production
 - (b) elimination of unit production
 - (c) converting given grammar in Chomsky normal from
 - (d) none of these
- 8. Context free grammars are closed under
 - (a) union (b) kleene star (c) concatenation (d) all the above
- 9. What is the maximum number of codes is generated to encode a turing machine which consists of four transition function?
 - (a) 12 (b) 24 (c) 36 (d) 48
- 10. The diagonalization language L_d is
 - (a) recursive(b) not recursively enumerable(c) recursively enumerable(d) both (a) and (c)

PART - B (5 x 2 = 10 Marks)

- 11. Differentiate DFA and NFA.
- 12. When two states are equivalent and distinguishable.
- 13. Define the language generated by a PDA.
- 14. Design a turing machine for computing the function f(x) = x + 1.
- 15. Define the classes P and NP.

PART - C (5 x
$$16 = 80$$
 Marks)

16. (a) (i) Prove that for every integer n≥0 the number 4²ⁿ⁺¹+ 3 ⁿ⁺² is multiple of 13. (10)
(ii) Convert the given NFA to DFA. (6)

45204

δ	0	1
\rightarrow q0	{ q0, q1 }	q0
q1	q2	q1
q2 *q3	q3	q3
*q3	φ	q2

O	•
~ -	

(b) (i) Consider the following E-NFA. Compute E-closure of each state and find its equivalent DFA. (10)

δ	3	a	b	c
\rightarrow	ф	{p	{q	{r}
q	{p	{q	{r}	ф
*r	{q	{ r }	ø	{p

(ii) Design a DFA which accepts odd number of 1's and any number 0's. (6)

17. (a) (i) Prove that for every regular expression *r* there exist a NFA with ε transition that accepts L(r). (10)

(ii) Show that the language
$$L = \left\{ \frac{o^{i^2}}{i \ge 1} \right\}$$
 is not regular. (6)

Or

- (b) (i) Construct deterministic finite automata for the regular expression $(a + b)^* ab$. (8)
 - (ii) State and prove any two closure properties of regular language. (8)
- 18. (a) (i) Let $S \rightarrow aB/bA$, $A \rightarrow aS/bAA/a$, $B \rightarrow bS/aBB/b$. Show that $S \Rightarrow aaabbabbba and construct a derivation tree whose yield is in "aaabbabbba". (8)$

(ii) Construct a PDA for the language
$$L = \left\{ \frac{a^n \ b^{2n}}{n \ge 1} \right\}.$$
 (8)

Or

(b) (i) Construct a PDA for set of palindrome over the alphabet{ a, b} $L(M) = {WcW^{R}}.$ (8)

45204

- (ii) Show that the following grammars are ambiguous.
 {S → aSbS/bSaS/ε} and {S → AB/aaB, A → a/aA, B → b}.
 (8)
- 19. (a) (i) Discuss the closure properties of CFL and prove any one of the property. (8)
 - (ii) Explain the programming techniques of turing machine. (8)

Or

- (b) (i) Discuss the closure properties of CFL and prove any one of the property. (8)
 - (ii) Explain the programming techniques of Turing machine. (8)
- 20. (a) (i) State post correspondence problem. Let $\sum = \{a, b\}^*$. Let A and B be lists of three strings as given below

 $A = \{b, bab^3, ba\} B = \{b^3, ba, a\}$. Does this instance of PCP have a solution? (6)

(ii) Prove that for two recursive language L_1 and L_2 , their union and intersection is recursive. (10)

Or

- (b) (i) Define universal language L_u . Prove that L_u is recursively enumerable. (8)
 - (ii) State halting problem. Show that it is undecidable. (8)