Reg. No. :

Question Paper Code: 54023

B.E./B.Tech. DEGREE EXAMINATION, NOV 2018

Fourth Semester

Mechanical Engineering

15UMA423 - STATISTICS AND NUMERICAL METHODS

(Regulation 2015)

(Statistical tables may be permitted)

Duration: Three hours

Maximum: 100 Marks

PART A - (10 x 1 = 10 Marks)

1.	Sample size for I	Large sample		CO1-U			
	(a) <30	(b) = 30	(c)	≥ 30	(d) none		
2.	The distribution of	of χ^2 depends on t	he			CO1- E	
	(a) observed freq	uencies	(b)	(b) degrees of freedom			
	(c) expected freq	uencies	(d)	none of these			
3.	Mean square betw	ween column mear	n =			CO2- E	
	(a) $SSE/c - 1$	(b) <i>SSE</i> / <i>n</i> − <i>c</i>	(c) <i>SSC/r</i>	· - 1	(d) $SSC/c - 1$		
4.	Latin square desi	gn is a				CO2- U	
	(a) One way	(b) Two way	(c) Three	way	(d) None of the	se	
5.	What is the order of convergence of Newton-Raphson method if the multiplicity of the root is one?						
	(a) 2	(b) 1	(c) 0		(d) None of the	above	
6.	The order of convergence in Newton-Raphson method is					CO3- E	
	(a) atleast 1	(b) 2		(c) 3	(d) 4		

7.	Newton forward interpo	CO4- R		
	(a) unequal intervals	(b) equ	al intervals (c) both	(d) none
8.	Find the second divided	CO4- R		
	X 2	5 10		
	Y 5	29 109		
	(a) 2.5	(b) 3.5	(c) 1	(d) 0
9.	Simpson's 1/3 rd Rule is	used only when	n the number of sub intervals is	CO5- R
	(a) odd	(b) even	(c) any number	(d) multiple of 3
10.	Trapezoidal Rule is use	d only when the	number of sub intervals is	CO5- R
	(a) any number	(b) even	(c) odd	(d) multiple of 3
		PART – B	$3 (5 \times 2 = 10 \text{Marks})$	
11.	Define large sample and			CO1-R
12.	Write the ANOVA table	CO2- Ana		
13.	Find an iterative formul	CO3- App		
14.	State Newton's forward	CO4- R		
15.	State Simpson's one-thi		CO5- R	
	_			

 $PART - C (5 \times 16 = 80 Marks)$

16. (a) (i) The sales manager of a large company conducted a sample CO1-E (8) survey in states A and B taking 400 samples in each case. The results were in the following table. Test whether the average sales in the same in the 2 states at 1% level

Average Sales	State A	State B
Mean	Rs. 2500	Rs. 2200
S.D	Rs. 400	Rs. 550

(ii) A group of 10 rats fed on diet A and another group of 8 rats CO1-E (8)fed on diet B, recorded the following increase in weight(gms)

Diet A	5	6	8	1	12	4	3	9	6	10
Diet B	2	3	6	8	10	1	2	8		

Does it show superiority of Diet A over Diet B.

Or

- (b) A certain injection administered to each of 12 patients resulted CO1-E (16) in the following increase of blood pressure: 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4. Can it be concluded that the injection will be in general accompanied by an increase in B.P.?
- 17. (a) Three samples each of size 5, were drawn from three CO2- App (16) uncorrelated normal populations with equal variances. Test the hypothesis that the population means are equal at 5% level.

Α	10	12	9	6	13			
В	9	7	12	11	11			
С	14	11	15	14	16			
Or								

(b) The table given below shows the yield of a certain crop in kgs CO2- App (16) per plot. The letters A, B, C, D refer to 4 different manorial treatments. Carry out an analysis of variance.

A260	B300	C335	D371
B280	A300	D300	C410
D320	C345	B340	A254
C372	D395	A290	B328

- 18. (a) (i) Find a root of $x \log_{10} x 1.2 = 0$ by Newton's method CO3-App (8) correct to three decimal places.
 - (ii) Using the Gauss-Jordan method solve the following CO3-App (8) equations 10x + y + z = 12; 2x + 10y + z = 13; x + y + 5z = 7.

(b) (i) Using Gauss – Seidel method, solve the equations CO3-App (8) 4x + 2y + z = 14x + 5y - z = 10; x + y + 8z = 20.

(ii)Find the numerically largest eigen value of CO3-App (8)

$$A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$$
 and the corresponding eigen vector.

(i) From the following table, find y(1.5) and y'(1) using cubic 19. (a) CO4- Ana (8)spline

x	1	2	3
у	-8	-1	18
	~		

(ii) Find f'(3) and f''(3) for the following data:

	x	3	3.2	3.4	3.6	3.8	4	
	f(x)	-14	-10.032	-5.296	-0.256	6.672	14	
Or								

(b) (i) Using Newton's divided difference formula find f(x) and f(6) CO4- App (8)from the following date:

x	1	2	7	8
f(x)	1	5	5	4

(ii) Fit the cubic spline for the data Hence evaluate y(1.5) given that $y_0'' = y_2'' = 0$.

Х	1	2	3
Y	-6	-1	16

20. (a) (i) Find the gradient of the road at the middle point of the CO5-E (8)elevation above a datum line of seven points of road which are given below.

x	0	300	600	900	1200	1500	1800
у	135	149	157	183	201	205	193

(ii) Evaluate

 $\int_0^1 \frac{1}{1+x^2} dx$, using Trapezoidal rule with h=0.2. Hence determine the value of π .

Or

(b) (i) Evaluate $\int_{1}^{1.2} \int_{1}^{1.4} \frac{1}{x+y} dx dy$ by trapezoidal and simpson's CO5- E (8)rule

4

(ii) Apply Gauss three point formula to evaluate CO5- E (8) $\int_{1}^{2} \frac{1}{1+x^{3}} dx$.

CO₄- Ana

CO4- App (8)

(8)

CO5- E

(8)