A		Reg. No. :										i.
	Q	uestion Paper	Cod	e : 5	310	4						
	B.E./B.Te	ch. DEGREE EX.	AMIN	ATIO	N, N	IOV	2018	8				
		Civil Eng	ineerin	g								
	15UCE304 -H	IIGHWAY AND	RAIL	WAY	ENG	GINI	EER	ING				
		(Regulation	on 2013	5)								
Dur	ration: Three hours			,	М	axin	num:	100	Mar	ks		
		Answer ALI	Quest	tions								
		PART A - (10 x	1 = 10	Mar	ks)							
1.	are a separate design standards and are a volume of traffic.	class of highways meant for through	with s n traffi	superi c hav	or fa	ciliti very	ies a hea	nd vy			CO	1-
	(a) National highway (b)Express way	(c)]	Foll r	oads				(d) S	tate	high	W
2.	Where the topography of than ruling gradient	a place compels gradient is used	s adopt 1.	ting s	steep	er g	radie	ent			CO	1-
	(a) Limiting (b)Exceptional	(c)N	linim	um				(d) N	/ laxi	mum	L
3.	Temperature stress in conc	rete pavements is	caused	l due	to						CO	2-
	(a) Repeated application of load											
	(b) Change in weather											
	(c) Due to expansion and contraction of slab											
	(d) Temperature differentia	al between top and	d botto	m of	slab							
4.	4. The Los Angeles abrasion value of good aggregate acceptable for wearing surface should be						CO	2-				
	(a) Less than 30% (b) More than 30%	(c) I	More	than	40%)		(d) Z	Zero		
5.	Ravelling is caused due to										CO	3-
	(a) Insufficient binder content (b) Excessive binder content					onter	nt					
	(c) Use of low viscosity bit	(c) Use of low viscosity bitumen (d) Heavy channalised traf					traff	ïc				

6.	Spraying of bitumen binder of low viscosity over a granular or non granular is called application of					CO3- R			
	(a) Tao	ck coat	(b) Prime coat	(c) Seal coat	(d) Stabil	ilisation			
7.	Longit known	Longitudinal movement of rail with respect to sleepers in track is known as				CO4- R			
	(a) Kin	nk	(b) Fish plate	(c) Creep	(d) Conin	g			
8.		is used in rail joints to maintain continuity of rail.				CO4- R			
	(a) Fis	h plate	(b) Coning	(c) Sleeper	(d) Ballas	t			
9.					CO5- R				
	(a) Ho	me	(b) Outer	(c) Semaphore	(d) Repea	ater			
10.	Recept	Reception, sorting and departure of trains is done at				CO5- R			
	(a) Marshalling yard (b)			(b) Goods yard					
	(c) Passanger yard			(d) Locomotive yard					
			PART – B (5 x 2	e= 10Marks)					
11.	List the factors that control highway alignment.					CO1- R			
12.	State the functions of base layer.					CO2- R			
13.	List the use of geo textiles.					CO3- R			
14.	Define cant deficiency.					CO4- R			
15.	List the any four methods for controlling movement of trains.					CO5- R			
	PART – C (5 x 16= 80Marks)								
16.	(a)	(i) Explain the v highway.	various surveys to be co	onducted to locate a new	CO1- U	(10)			
	(ii) Discuss how obligatory points control highway alignment.				CO1- U	(6)			

Or

- (b) While aligning a highway in built-up area it was necessary to CO1- App (16) provide a circular curve of radius 325m. The design speed is 65kmph, length of wheel base of largest truck = 6m, width of pavement = 10.5m, rate of introduction of super elevation = 1 in 150, Assume the super elevation is provided by rotating pavement about centre line. Design the length of transition curve.
- 17. (a) Enumerate the step by step procedure for bituminous mix CO2-U (16) design by Marshal stability method.

Or

- (b) (i) Calculate the ESWL of a dual wheel load assembly carrying CO2- App (8) 2044 kg each for trial pavement thickness values of 150,200,250 mm. Centre to centre spacing between the two tyres = 270mm and clear gap between the walls of tyre = 110mm.
 (ii) Calculate the corner load stress from the following data. CO2- App (8) Design wheel load = 7000kg, radius of contact = 17.25 cm, modulus of sub grade reaction = 30kg/cm³, elastic modulus of pavement material = 3X10⁵kg/cm², poisons ratio of concrete = 0.15, thickness of slab = 28cm. Assume any suitable data if required.
- 18. (a) Mention the causes for various failures in cement concrete CO3-U (16) pavement.

Or

- (b) Explain the various steps involved in construction of bituminous CO3- U (16) and cement concrete roads.
- 19. (a) Draw a neat sketch of permanent way and explain the functions CO4- U (16) of various components.

Or

(b) Calculate the length of transition of curve for a design speed of CO4- App (16)
 90kmph on a broad gauge track with radius of curve 496m.
 Assume cant deficiency as 7.9cm.

20. (a) Calculate all the necessary data to set out a 1 in 8.8 turnout CO5- App (16) taking off from a straight B.G. track with a curve starting from the toe of the switch. Given that heel divergence = 11.4cm.

Or

(b)	(i) Explain the various methods of plate laying	CO5- U	(8)
	(ii) Enumerate the various methods for maintenance of high	CO5- U	(8)
	speed track. Explain any one method.		