Reg. No.:					

Question Paper Code: 47104

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Seventh Semester

Civil Engineering

14UCE704 - STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING (Note: Use of IS 13920:1993, IS 4326:1993 and IS 1893(Part 1):2002 are permitted in the **End Semester Examinations**)

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

- 1. Unit of stiffness is
 - (a) $Kg-m/s^2$

(b) N-s/m

(c) N/m

- (d) $N-s/m^2$
- 2. Natural frequency of suspended frequency is
- (a) $\omega_{n} = \sqrt{\frac{k}{m}}$ (b) $\omega_{n} = \sqrt{\frac{m}{k}}$ (c) $\omega_{n} = \sqrt{\frac{1}{km}}$ (d) None of the above
- The graphical representations of the relative amplitude of the two co ordinates and their phase angle relationship is called as
 - (a) Bending moment diagram

(b) Moher's diagram

(c) Mode shape diagram

(d) Shear force diagram

4.	Shear building is defined (a) Rotation		o rotation				
	(c) Translation		(d) No translation				
5.	The movements of plates towards each other and collide						
	(a) Divergent boundary		(b) Convergent boundary				
	(c) Transform boundary		(d) Plate boundary				
6.	For an ideal Rigid buildi (a) greater than one () greater than zero	(d) equal to zero			
7.	Response spectrum repro	esents by:					
	(a) IS 1839: 2002	(b) IS 1893: 2001	(c) IS 1839 : 2001	(d) IS 1893: 2002			
8.	The ratio between ultima	ate deformation to in	itial yielding				
	(a) Dilation factor		(b) Moment dist	ribution			
	(c) Ductility factor		(d) Damping fa	actor			
9.	The formula for design ba	ase shear (Vb) is					
	(a) A _h W	(b) $A_hW/4$ (c) A_h	$_{\rm h}$ W/3 (d) $A_{\rm h}$ W/2				
10.	Indian standard guidelin	es for improving ear	_	_			
	(a) IS 13827 : 1993		(b) IS 13828 : 1993				
	(c) IS 13826 : 1993		(d) IS 13826 : 19	92			
		PART - B (5 x 2	= 10 Marks)				
11.	What is mean by vibration	on?.					
12.	Explain the concept of D	Decoupling of equation	ons.				
13.	What are the causes of E	Earthquake?					
14.	What is bouchinger effect	ct?					
15.	What is the need of duct	ility?					

PART - C (5 x 16 = 80 Marks)

- 16. (a) (i) Explain the equivalent stiffness of the spring. How do calculate the equivalent stiffness of the spring when the spring connected parallel and series. (8)
 - (ii) Derive the equation of motion for single degree of freedom with free vibration by following methods: (8)
 - (a) D Alembert's principle
 - (b) Energy methods.

Or

(b) (i) Find the natural frequency of the system as shown in Figure 1.1. Take $k_1 = k_2 = 1500 \text{ N/m}$, $k_3 = 2000 \text{ N/m}$ and mass 'm' = 10kg. (10)

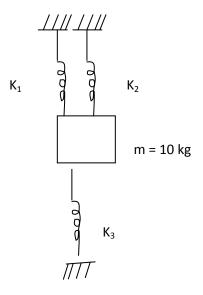


Figure: 1.1

- (ii) Explain different types of damper with neat sketch.
- 17. (a) Explain in detail about the concept of modal superposition method. (16)

Or

- (b) An undammed single degree of freedom system (m = 30 kg, k = 500 N/m) is given an initial displacement of 10 mm and initial velocity of 75 mm/s. Find (16)
 - (a) The natural frequency
 - (b)The period of vibration
 - (c)The amplitude of motion
 - (d)The time at which the second and third maximum peak occurs.

(6)

18.	. (a) Explain in detail about the behavior of RCC, Steel and prestressed concret Structures under earthquake loading.	e (16)
	Or	
	(b) (i) What is meant by liquefaction of the soil? Explain any four methods to	control.
10	(ii) Explain different types of seismic waves in detail with sketch.	(8)
19.	. (a) Explain the importance of ductility in earthquake resistant structures.	(16)
	Or	
	(b) (i) Explain design spectrum. And how it's differs from response spectra?	(8)
	(ii) Explain the concept of design?	(8)
20.	. (a) (i) Explain the Guidelines given by IS 4326–1993 for Earthquake resist	(8)
	(ii) Explain in detail, how do you calculate the base shear in a building with factor and importance factor?	n zone (8)
	Or	
	(b) Explain the importance of ductility in earthquake resistant design of RC but the factors affecting ductility	ildings and (16)