A		Reg. No. :							
Question Paper Code: 54105									
	B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018								
	Fourth Semester								
		Civil E	ngineerii	ng					
		15UCE405-SO	IL MEC	HANI	CS				
		(Regula	ation 201	5)					
Dura	ation: Three hours				Maxir	num: 1	00 Ma	arks	
		Answer A	LL Ques	tions					
	PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$								
1.	The ratio of the unit v	weight of the soil soli	id to that	of wat	ter is cal	led			CO1- R
	(a) Void ratio		(b) Po	orosity					
	(c) Specific gravity		(d) D	egree o	of satura	tion			
2.	Which of the following	ng range is for Clay?							CO1- R
	(a) 30mm	(b) 0.002 - 0.075mm	(c) 0	.075 –	4.75 mm	n	(d) < 0).002	mm
3. Constant head permeameter is used for								C	CO2- R
	(a) Coarse grained so	il (b) Silty soil	(c) Claye	ey soil		(d) Or	ganic	soil
4.	The point load in Bousinesq analysis, influence coefficient value forCO2- Rthe ratio of radial distance to depth (r/z) is zero						CO2- R		
	(a) 1	(b) 0.3328	(c) (0.4775			(d) 2		
5.	The coefficient of compressibility of soil, is the ratio of CO3 H					CO3 R			
	(a) strain to stress								
	(b) stress to settlement								
	(c) rate of loading to that of settlement								
	(d) stress to strain								
6.	5. The rate of consolidation is more in single drainage than double CO3- R drainage					CO3- R			
	(a) Isochrones	(b) Critical height	(c) (Quick-s	and con	dition	(d) I	loss (of Head

7.	Give	e an example of co	phesion less soil			CO4- R			
		(a) Sand (b) Clay (c) Silt			(d) Moorum				
8.	The shear test one which used to find out the shear strength of CO4- R collapsible clay soil is								
	(a) Direct Shear (b) UCC (c) Triaxial (d) Van								
9.	Feli	Felineus Method is useful to find out the				CO5- R			
	(a) Centre of critical slip circle (b) Infinite slope								
	(c) Finite slope (d) All the above								
10.	If the failure of a finite slope occurs through the toe, it is known as				CO5- R				
	(a) slope failure (b) base failure (c) toe failure					(d) face failure			
PART - B (5 x 2 = 10 Marks)									
11.	Defi	ine after berg limit	ts			CO1- R			
12.	What is flow net? What are its properties?					CO2- R			
13.	Distinguish between compaction and cosolidation.					CO3- U			
14.	List out the various types of triaxial shear tests based on drainage conditions. CO4-U					CO4- U			
15.	List out different modes of slope failure					CO5- R			
PART – C (5 x 16= 80Marks)									
16.	(a) A natural soil deposit has a bulk unit weight of 18.44 KN/ m^3 , CO1- App water content of 5 %. Calculate the amount of water required to the added to 1 m^3 of soil to raise the water content to 15%. Assume the void ratio to remain content .What will then be the degree of saturation? Assume G= 2.67. Or					(16)			
	(b) (i) List out the purpose of soil classification.				CO1- U	(8)			
		(ii) Write limitati analysis.	ions in the use of Stocl	k's law in sedimentation	CO1- U	(8)			
17.	(a)	table is 3m beloground water tall diagram showing	ow the ground surface ble has a degree of set g the variation of total	bed of soft clay. The water ce. If the sand above the aturation of 45%. Plot the stress, pore water pressure ratio of sand is 0.7. Take	CO2- App	(16)			

Or

- (b) An annular ring footing of external and internal radii of 8m and CO2- App (16) 4m respectively transmits a pressure of 100 kN/m². Compute the vertical stresses at a depths 0.50m,1.0m, 2.0m and 4.0m below centre. Draw the stress distribution curve with depth.
- 18. (a) Explain with a neat sketch the Terzhaghi's one dimensional CO3-U (16) consolidation theory

Or

(b) (i) In a consolidation test void ratio decreased from 0.7 to 0.65 CO3- App (8) when the load was changed from 50 kN/m² to 100 kN/m². Compute compression index and coefficient of volume change.

(ii) In a laboratory a 2cm thick soil sample takes 25 minutes to CO3- App (8) reach 30% of consolidation. Find the time taken for a 5 m thick clay layer in the field to reach 40% consolidation. Assume double drainage

19. (a) A series of shear test was performed on a soil. Each test was CO4- App (16) carried out until the soil sample sheared and the principal stresses for test are as follows: Determine the shear strength parameters by Mohr circle method

σ_3 (Minor principal stress) kN/m ²	300	400	500
σ_1 (Minor principal stress) kN/m ²	875	1160	1460
Or			

(b) The following results was obtained from a consolidated undrained CO4- App (16) test on normaly consolidated clay. Plot the strength envelope in terms of total stress and effective stress and determine strength parameters.

Sample No.	Cell pressure	Deviator	Pore water
	kN/m ²	stress kN/m ²	pressure
			kN/m ²
1	250	152	120
2	500	300	250
3	750	455	350

(a)	Discuss the friction circle method for stability analysis of slope.	CO5- U	(16)
	Or		
(b)	(i) State the utility of stability number in the analysis of stability of slope	CO5- U	(8)
	(ii) What are the types of slope failures and write remedial measures to safeguard the slope failures	CO5- U	(8)
	A N	(b) (i) State the utility of stability number in the analysis of stability of slope	Or (b) (i) State the utility of stability number in the analysis of stability CO5- U of slope (ii) What are the types of slope failures and write remedial CO5- U