A		Reg. No. :										
		Question	Paper (Code	: 54	B0 1]				
	B.E	. / B.Tech. DEGREE	EEXAMI	NATIO	ON, I	NOV	201	8				
		Four	th Semest	er								
		Biomedi	cal Engine	ering								
	15UBM40	1-ANALOG AND I	DIGITAI	INTE	GR A	TFL		2CIT	тс			
	150010140		lation 201	11111	UNA	ILL	/ CII		115			
Dur	ation: Three hours	(Regu	lation 201	.3)	N	Invi	mum	· 100) Ma	rka		
Dui	ation. Three hours	Answer	ALL Ques	stions	N	14711	num	. 100) ivia	182		
		PART A - ()	$10 \ge 1 = 1$	0 Mar	·ks)							
1.	If $A_{DM} = 3500$ and $A_{DM} = 3500$	$A_{CM} = 0.35$, the CMI	RR is								CO	1 -F
	(a) 1	(b) 0	(c) a	α				((d) 1	.5		
2.	Which one of the Amplifier.	e following feature	es suited	for	Instr	ume	ntatio	on			CO	1 -F
	(a) High CMRR	(b) High DC offs	set (c) I	Low C	Gain A	Accu	racy	((d) H	ligh	Outp	ut
3.	A multivibrator is an electronic circuit used to implement CO2 -							2 -R				
	(a) Oscillator		(b) [Гimer								
	(c) Flip-flop		(d) <i>A</i>	All of	the N	Aent	ioneo	1				
4.	The Filter	controls the capture	range and	lock	range	e of I	PLL				CO	2 -F
	(a) Low Pass	(b) High Pass	(c) I	3and I	Pass			((d) B	and	Reje	ct
5.	What is the form operation?	ula for finding the	e time p	eriod	in 1	Mon	ostab	le			CO	3- F
	(a) T= 1.1 RC	(b) T= 1.5 RC	(c)]	Γ= 2.1	RC			((d) T	= 2.3	5 RC	
6.	The operating volta	ge range for NE/SE	565 PLL.								CO	3 -F
	(a) \pm 6V to \pm 12V	(b) $\pm 12V$ to ± 18	$3V$ (c) \pm	± 4V t	o ± 1	2V		((d) ±	7V	to ±	12V
7.	The output of an A when	AND gate with three	inputs, A	ь, В, а	and C	C, is	HIG	Η			CO	4 -L
	(a) $A = 1, B = 1, C =$	= 0	(b) <i>A</i>	A = 0,	B =	0, C	= 0					
	(c) $A = 1, B = 1, C =$	= 1	(d) /	A = 1,	B =	0, C	= 1					

8.	Арр	blying DeMorgan's theorem to the	expression \overline{ABC} , we get		CO4 -U				
	(a)	$\overline{A} + \overline{B} + \overline{C}$ (b) $\overline{A + B + C}$	(d) A(B +	C)					
9.	How	v many flip-flops are in the 7475 IC?	、 <i>,</i>		CO5 -R				
10.	(a) 1 The	l (b) 2 flip-flop is only activated by	(c) 4	(d) 8	CO5- R				
	(a) H	Positive edge trigger	(b) Negative edge trigger						
	(c) Either positive or Negative edge trigger (d) None of the Mentioned								
PART - B (5 x 2 = 10 Marks)									
11.	List out the characteristics of OP-Amp Circuits.								
12.	List the types of comparators								
13.	Calculate output frequency f_0 , Lock range Δf_C of a 565 PLL if $R_T = 10k\Omega$, C								
	C _T =	= 0.01 μ F and C= 10 μ F.							
14.	What is priority Encoder?				CO4- U				
15.	Clas	ssify the different types of PLD.			CO5 -R				
	PART – C (5 x 16= 80Marks)								
16.	(a)	Describe the AC Characteristics of the circuits with suitable example.	Operational Amplifier	CO1- U	(16)				
	Or								
	(b)	(b) Describe the DC Characteristics of the Operational Amplifier CO1- U circuits.							
17.	(a)	How the square wave is generated whe to other state and explain it.	en it switches from one sate	CO2 -U	(16)				
Or									
	(b)	Draw and explain the types of D/A waveforms.	Converters with suitable	CO2 -U	(16)				
18.	(a)	Describe the operation of Monostable suitable waveforms.	Multivibrator circuit with	CO3 -U	(16)				
Or									
	(b)	Draw the block diagram of VCO. Exp of the VCO with suitable waveforms.	plain the working principle	CO3- U	(16)				

54B01

19. (a) Draw the logic diagram of the full Adder and explain its CO4-U (16) operation.

	Or		
(b)	Simplyfy the following using tabulation method	CO4 -App	(16)
	$Y(w,x,y,z) = \Sigma m(1,2,3,5,9,12,14,15) + \Sigma d(4,8,11)$		

- 20. (a) What is RAM? Explain the different types of RAM in detail. CO5- U (16) Or
 (b) Sketch the transition table and state stable for an asynchronous CO5 -U (16)
 - sequential circuit described by the following Boolean expressions Y1=xy1+x'y2', Y2=xy1'+x'y2

54B01