Reg. No. :

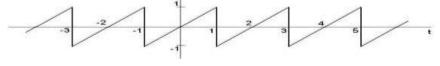
Question Paper Code: 54B04 B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018 Fourth Semester **Biomedical Engineering** 15UBM404 - PRINCIPLES OF SIGNALS AND SYSTEMS (Regulation 2015) Duration: Three hours Maximum: 100 Marks Answer ALL Questions PART A - (10 x 1 = 10 Marks)An example of a discrete set of information/system is _____ (a) the trajectory of the Sun (b) data on a CD (c) universe time scale (d) movement of water through a pipe Which of the following is a stable system? (b) $y(t) = t^2 x(t)$ (c) $y(t) = e^{t} x(t)$ (a) y(t) = tx(t)(d) $y(t) = e^{-t}u(t)$ Fourier series is useful for frequency domain analysis of _____ Signals. (a) periodic (b) aperiodic

CO1 R

CO1 R

CO₂ R

(c) harmonic (d) none of the above Fourier transform of Gaussian pulse will be CO₂ R 4. (a) squared sinc pulse (b) another Gaussian pulse (d) impulse Train (c)sinc pulse 5. The convolution of of two signals is given by -CO₃ R (d) All of the above (a) y(t) = x(t) * h(t)(b) x(t) = y(t) * h(t)(c) y(t) *h(t) = x(t)Given that $H(s) = e^{-4S}$. What is the impulse response of the system? 6. CO3 R (a) $e^{-4t} u(t)$ (d) $e^{4t} u(t)$ (b) u(t-4) (c) $\delta(t-4)$


1.

2.

3.

7.	A band limited continuous time signal with maximum frequency f_m , sampled at a frequency f_s , can be fully recovered from its samples, proved that					CO4 R
	(a) f	$f_s \ge 2f_m$	$(b)f_s = 2f_m$	$(c)f_m \ge 2f_s$	$(d)f_s = f_m$	
8.	Z transform is also called as					CO4 R
	(a) bilateral			(b) two sided Z transform		
	(c) Both A and B			(d) None of these		
9.	When number of delays is equal to order of the system, the structure CO5 is called					
	(a) 1	non canonic (b) canonic (c) direct form I (d) C		(d) Cascade	Cascade form	
10.	. What the methods find inverse Z transform?					CO5 R
	(a) Partial fraction expansion			(b) Contour integration		
	(c) Convolution method			(d) All the above		
PART - B (5 x 2 = 10 Marks)						
11.	Find the fundamental period T of the signal of the following continuous CO1 R signal? $X(t)=20\cos(10\pi t+\pi/6)$.					
12.	State Dirichlets conditions.					CO2 R
13.	Draw the block diagram of the LTI system described by $\frac{dy(t)}{dt} + y(t) = COS$					CO3 R
	0.1x(t).					
14.	Define Sampling theorem?					CO4 R
15.	Define unilateral and bilateral Z transform.					CO5 R
	PART – C (5 x 16= 80Marks)					
16.	(a) (i) Determine whether the following signals are periodic or CO1- Ap aperiodic. If periodic find the fundamental period $x(t) = sin2\pi t + cos\pi t.$					p (8)
	(ii) Determine whether the following signals are power or energy CO1- App signals, Determine power and energy of the signals $x(n) = (0.5)^n u(n).$ Or					p (8)
	(b) Explain in detail about the classification of systems with examples CO1- App					p (16)

17. (a) Determine the Fourier series representation for the following CO2- App (16) signal

OR

- (b) Find the Laplace Transform and its ROC for the signal CO2-Ana (16) $x(t) = e^{-2|t|}$.
- 18. (a) Determine the impulse response h(t) of the system given by the CO3- Ana (16) differential equationd²y(t)/ dt² +2y(t) = x(t) with all initial conditions to be zero

Or

- (b) The input-output of a causal LTI system are related by the CO3- Ana (16) differential equation $\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = 2x(t)$. Find the impulse response h(t) and output response y(t) of this if x(t) = u(t).
- 19. (a) State and prove sampling theorem for low pass band limited signal CO4- U (16) and explain the process of reconstruction of the signal from its samples.

Or (b) Compute the response of the system. (An)-CO4 CO4- App (16) Y(n) = 0.7 y(2n-1) - 0.12y(n-2) + x(n-1) + x(n-2)

20. (a) Obtain the cascade and parallel realization of (U)-CO5 CO5- App (16) Y(n)-1/4y(n-1)-1/8y(n-2)=x(n)+3x(n-1)+2x(n-2)

Or

(b) LTI discrete time system y(n) = 1.5y(n-1)-0.5y(n-2)+x(n)+x(n-1) CO5- App (16) is given an input x(n) = u(n). Find the transfer function and impulse response.