С		Reg. No. :			
		Question Pap	er Code: 55B04		
	B.E	. / B.Tech. DEGREE I	EXAMINATION, NOV 20	018	
		Fifth	Semester		
		Biomedica	al Engineering		
	15UBM50	4 - PRINCIPLES OF	DIGITAL SIGNAL PROC	CESSING	
		(Regula	ation 2015)		
Dur	ration: Three hours	Answer A	Max LL Questions	imum: 100 Marks	
		PART A - (5	5 x 1 = 5 Marks)		
1.	In radix 2 FFT the tot	al number of complex r	nultiplications are	CO1- R	
	(a) (N /2) log ₂ N	(b) N log ₂ N	(c) (N*N) $\log_2 N$	(d) $\log_2(N/2)$	
2.	The poles of the Chel	byshev filter lie on a		CO2- R	
	(a) Circle	(b) Ellipse	(c)Parabola	(d) Hyperbola	
3.	In linear phase realize reducing the requisite	ration, equal valued coe number of	efficients are taken common	for CO3- R	
	(a) Adders	(b) Subtractors	(c) Multipliers	(d) Dividers	
4.	The error in the filter output that results from rounding or truncating CO4- R calculations within the filter is called				
	(a) Coefficient quantization error		(b) Adder overflow limit cycle		
	(c) Round off noise		(d) Limit cycles		
5.	In Barlett window, rectangular window s	the triangular function equence from	on resembles the tapering the middle to the ends.	of CO5- R	
	(a) Linearly	(b) Elliptically	(c) Hyperbolically	(d) Parabolically	

$PART - B (5 \times 3 = 15 Marks)$

- 6. Find DFT of the sequence $x(n) = \{1,2,3,0\}$ using DIF algorithm CO1-U
- 7. Determine order of the Butterworth filter for the given specification. Pass band attenuation is -4db with frequency 10rad/sec and stop band attenuation is -20db with frequency 30rad/sec.
- 8. What are the desirable and undesirable features of FIR filters CO3-U
- 9. The filter coefficient H=-0.673 is represented by sign magnitude fixed point CO4-App arithmetic. If the word length is 6 bits, compute the quantization error due to truncation.
- 10. Estimate the power density Spectrum of x (n) = $\{1, 2, 4\}$ using autocorrelation CO5-U

$$PART - C (5 \times 16 = 80 Marks)$$

11. (a) Find the DFT of the Sequence

 $\mathbf{X}(\mathbf{n}) = \left\{ \begin{array}{ll} 1 & for \ 0 \leq n \leq 2 \\ 0 & otherwise \end{array} \right.$

For N=4 then plot Magnitude and angle of X(K)

Or

- (b) Determine the IDFT of the following sequence using DIT-FFT method. CO1- App (16) $X(K) = \{0, -\sqrt{2} + j(2+\sqrt{2}), 0, \sqrt{2} - j(2-\sqrt{2}), 8, \sqrt{2} + j(2-\sqrt{2}), 0, -\sqrt{2} - j(2+\sqrt{2})\}$
- 12. (a) Design a Chebyshev filter for the following specification using bilinear CO2- App (16) transformation and impulse invariance method

 $\begin{cases} 0.8 \leq H(ejw) \leq 1 \ for \ 0 \leq w \leq 0.2\pi \\ H(ejw) \leq 0.2 \ for \ 0.6\pi \leq w \leq \pi \end{cases}$

- Or
- (b) For the given specification, design a Butterworth high pass filter CO2- App (16) $\alpha_p=3db$, $\alpha_s=15db$, $\Omega_p=1000$ rad/sec and $\Omega_s=500$ rad/sec. Convert the analog transfer function to digital using bilinear transformation.

13. (a) Design a FIR filter using hanning window for the specification given CO3- App (16)

$$H_d e^{(jw)} = \begin{cases} 1 & for - \pi/4 \le w \le \pi \\ 0 & for \ w \le \pi/4 \end{cases}$$

- Or
- (b) Determine the filter coefficients h(n) obtained by sampling CO3- App (16)

$$H_d e^{(jw)} = \begin{cases} e^{-j(N-1)w/2} & for 0 \le w \le \pi/2 \\ 0 & for \ \pi/2 \le w \le \pi \end{cases}$$

CO1- App (16)

14. (a) Explain the quantization process and errors introduced due to CO4-U (16) quantization?

Or

(b) Discuss the effects of finite word length in FIR digital filters	204- U (16)
--	------------	---

15. (a) Derive the expression for discrete wavelet transform. CO5- U (16) Or

(b) Explain in detail about different types of non-parametric estimation of CO5-U (16) power spectrum density.