С		Reg. No. :											
	Question Paper Code: 51Z24												
M.E. DEGREE EXAMINATION, NOV 2018													
First Semester													
CAD / CAM													
15PMA124 - ADVANCED NUMERICAL METHODS													
(Regulation 2015)													
Dur	ation: Three hours						Max	kimu	m: 1	00 N	larks	3	
Answer ALL Questions													
1.	PART - A (5 x $1=5$ Marks) "As soon as a new value for a variable is formed by iteration, it is used immediately in the following equations.")1- R			
	(a) Gauss – Seidel method				(b) Thomas algorithm								
	(c) Gauss – Jacobi met	(0	(d) Gauss elimination method										
2.	The Error term in Adam – Bash forth Predictor formula is										CC)2 -R	
	$(a)\frac{14 h}{45}\Delta^4 y_0$	$(b)\frac{14h}{45}\Delta^4 y_0$	(0	$(\frac{14}{45})$	$\frac{h}{\Delta^4}$	<i>y</i> ₀		(d)]	None	e of t	the a	bove	
3.	When explicit method is stable only if?										CC)3- R	
	(a) $\lambda > 1$	(b) $\lambda > 1/2$	(0	c)λ<	< 1/2			(d) 2	λ < 1				
4.	The PDE $xf_{xx} + y f_{yy}$	h = 0 is elliptic when									CC)4 -R	
	(a) $x > 0$ and $y < 0$			(b) $x < 0$ and $y < 0$									
	(c) $x < 0$ and $y > 0$			(d) None of the above									
5.	R(x) is orthogonal then	1									CC)5- R	
	(a) $\int_{0}^{1} R(x) F_{i}(x) dx = 0$	(b) $\int_{-1}^{1} R(x) F_i(x) dx = 0$) (0		R(x)	dx =	0	(d)	$\int_{0}^{1} F_{i}(z)$	x)dx	= 0		

$PART - B (5 \times 3 = 15 \text{ Marks})$

6.	Write down formula for the Faddeev – Leverrier method?	CO1-U
7.	Write down the Runge-Kutta formula of fourth order.	CO2-U
8.	Give an example of parabolic equation.	CO3-U
9.	Write down the five point finite difference scheme to solve Laplace equations.	CO4-U
10.	Write formula for Galerkin Finite element method.	CO5-U

$$PART - C (5 \times 16 = 80 Marks)$$

11. (a) (i) Evaluate $\sqrt{12}$ to four decimal places by Newton's – Raphson CO1- App (8) method.

(ii) Solve by Gauss elimination method, the equations CO1- App (8) 2x + 3y = 7 = 5

$$2x + 3y - z = 5$$

 $4x + 4y - 3z = 3$
 $-2x + 3y - z = 1$

Or

(b) (i) Solve the system of equations using pivot techniques CO1- App (8)

$$x+y+z = 7$$

 $3x+3y+4z = 24$
 $2x+y+3z = 16$

(ii) Using Gauss-Seidel iterative method, solve the following CO1- App (8) system of equations:

8x-3y+2z = 30; 4x+11y-z = 33; 6x+3y+12z = 35.

12. (a) Find y (0.2) by Runge kutta method of fourth order if y'' - x y' = 0, CO2- App (16) y(0) = 1, y'(0) = 0

Or

(b) (i) Solve the equation y''(x) - xy(x) = 0 for $y(x_i), x_i = 0, 1/3, 2/3$, given that y(0) + y'(0) = 1 and y(1) = 1. (ii) Using Adam's Bash forth method find y(4.4) given $5xy' + y^2 = 2, y(4) = 1, y(4.1) = 1.0049,$ y(4.2) = 1.0097 and y(4.3) = 1.0143. CO2- App (8) CO2- App (8)

- 13. (a) (i) Solve by Crank-Nicholson method, $u_{t} = \frac{1}{16}u_{xx} \ 0 < x < 1, t > 0; u(x, 0) = 0, u(0, t) = 0, u(1,t) = 100t.$ Compute u for one time with h = 1/4. (ii) Explain implicit method Or (8)
 - (b) (i) Discuss the stability of two dimensional heat equation CO3-U (8) $u_t = \alpha (u_{xx} + u_{yy}).$ (ii) Discuss ADI method to solve the two dimensional parabolic CO3-U (8) equations.
- 14. (a) Obtain a finite difference scheme to solve the Laplace equation. CO4 -App (16) Solve ∇²u = 0 at the pivotal points in the square shown fitted with square mesh. Use Leibmamm's iteration procedure. (5 iteration only)

Or

(b) Solve the Poisson's equation

CO4 - App (16)

 $u_{xx} + u_{yy} = -81xy$, 0 < x < 1, 0 < y < 1 given that u(0, y) = 0, u(x, 0) = 0, u(1, y) = 100, u(y, 1) = 100 and h = 1/2

u(0,y) = 0, u(x,0) = 0, u(1,y) = 100, u(x,1) = 100 and h = 1/3.

15. (a) Solve the boundary value problem $u_{xx} + u_{yy} = -1, |x| \le 1, |y| \le 1$ and u=0 on |x| = 1, |y| = 1. Use the Galerkin finite element method to determine the solution values at the nodes $(0,0), (\frac{1}{2}, 0)$ and $(\frac{1}{2}, \frac{1}{2})$. (Or)

(b) Solve the boundary value problem

CO5-App (16)

 $u_{xx} + u_{yy} = -2$, $|x| \le 2$, $|y| \le 2$ and u=0 on the boundary. Use the Galerkin finite element method to determine u at the nodes (0,0), (1,0) and (1,1).