						r				r			-
A		Reg. No. :											
Question Paper Code: 53A04													
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018													
Third Semester													
Agricultural Engineering													
	15UAG	304 - FLUID ME	CHA	NIC	S Al	ND H	IYD	RAI	JLIC	S			
		(Reg	ulatio	on 20	15)								
Dur	ation: Three hours	Answer	ΔΤΤ	O_{114}	ostin	ng			Ma	ximu	ım: 1	00 1	Marks
			10 v	. Qui 1 =	10 N/	lis Iarka)						
1	The force per unit leng	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	10 Å	1 -	10 10.	laike)						CO1-R
1.	(a) Surface tension	(b) Compressibi	lity	(c)	Can	illari	tv			(1) Vic	cosi	ty
2	(a) Surface tension A manometer is used to	(0) Compression	IIIy	(U)	Cap	man	ty			(u) V 13	0051	CO1-R
۷.	(a) Low pressure	to measure		(h)	Mod	larat	o nro	00117	-0				COI-K
	(a) Low pressure.			(U) (d)	A trac		e pre	.55ui	C.				
2	(c) High pressure.		· 1 @	(a)	Au	iospi	1eric		ssure.				CO2 D
3.	3. A flow in which the quantity of liquid flowing per second is not Co constant, is called							CO2-R					
	(a) Streamline flow.	(b) Turbulent flo	OW.	(c)	Stea	dy f	low.			(d) U	Unste	eady	flow.
4.	The imaginary line dr to any point gives the	awn in the fluid i direction of motic	in suc	ch a that	way poin	that t, is l	the know	tang yn as	ent S				CO2-R
	(a) Path line	(b) Stream line		(c)	Stea	k lin	e			(d) I	Poter	ntial	line
5.	The pressure of the lie venturimeter	quid flowing thro	ugh t	he d	iver§	gent	porti	on c	of a				CO3- R
	(a) Remains constant			(b)	Incr	ease							
	(c) Decrease			(d)	Dep	ends	s upo	n m	ass of	f liqı	uid		
6.	Bernoulli's equation is applied to							CO3- R					
	(a) Venturimeter	(b) Orifice meter	r	(c)	Pito	t tub	e			(d) A	All of these		

7.	The discharge over a rectangular notch is								
	(a) Inversely propor	tional to $H^{3/2}$	(b) Directly proportional	to $H^{3/2}$					
	(c) Inversely propor	c) Inversely proportional to $H^{5/2}$ (d) Directly proportional to H							
8.	A structure used to dam up a stream or river over which the water flows is called								
	(a) Orifice	(b) Notch	(c) Weir	(d) Dam					
9.	Pump is a device which convertCO:(a) Hydraulic energy into electrical energy.								
	(b) Hydraulic energy into Mechanical energy								
	(c) Mechanical energy into hydraulic energy.								
	(d) Mechanical energy into electrical energy.								
10.	Model analysis of p	odel analysis of pipes flow are based on							
	(a) Reynold number (b) Froude number (c) Mach number (d) Euler								
PART - B (5 x 2= 10 Marks)									
11.	Define Capillarity. CO1- F								
12.	Differentiate steady and unsteady flow.								
13.	List the assumptions used in deriving Bernoulli's equation.								
14.	What is notch?								
15.	Write the uses of dimension analysis.								
		PART – C (5	x 16= 80 Marks)						
16.	 (a) Calculate the when immerse (i) water and (ii) mercury. T 0.52 N/m for mercury is given 	capillary rise in a glass d vertically in Take surface tension is nercury in contact with en as 13.6 and angle of c	tube of 2.5 mm diameter 0.0725 N/m for water and air. The specific gravity for contact is 130° .	r CO1- App (16) d r					

Or

- (b) An oil of viscosity 5 poise is used for lubrication between a shaft CO1- App (16) and sleeve. The diameter of the shaft is 0.5 m and it rotates at 200 r.p.m. Calculate the power lost in oil for a sleeve length of 100 mm. The thickness of oil film is 1.0 mm.
- 17. (a) A 30 cm diameter pipe, conveying water, branches into two pipes CO2- App (16) of diameters 20 cm and 15 cm respectively. If the average velocity in the 30 cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20 cm diameter pipe is 2 m/s.

Or

- (b) Water flows through a pipe AB 1.2 m diameter at 3 m/s and then CO2- Ana (16) passes through a pipe BC 1.5 m diameter. At C, the pipe branches. Branch CD is 0.8 m in diameter and carries one-third of the flow in AB. The flow velocity in branch CE is 2.5 m/s. Find the volume rate of flow in AB, the velocity in BC, the velocity in CD and the diameter of CE.
- 18. (a) The water is flowing through a pipe having diameters 20 cm and CO3- Ana (16) 10 cm at sections 1 and 2 respectively. The rate of flow through pipe is 35 litres/s. The section 1 is 6 m above datum and section 2 is 4 m above datum. If the pressure at section 1 is 39.24 N/cm², find the intensity of pressure at section 2.

Or

- (b) An oil of sp. Gr. 0.8 is flowing through a venturimeter having CO3- Ana (16) inlet diameter 20 cm and throat diameter 10 cm. The oil-mercury differential manometer shows a reading of 25 cm. Calculate the discharge of oil through the horizontal venturimeter. Take $C_d=0.98$.
- 19. (a) Determine the height of a rectangular weir of length 6 m to be CO4-U (16) built across a rectangular channel. The maximum depth of water on the upstream side of the weir is 1.8 m and discharge is 2000 litters/s.Take $C_d = 0.6$ and neglect end contractions.

Or

- (b) A right-angled V- notch is used for measuring a discharge of 30 CO4- Ana (16) litters/s. An error of 1.5 mm was made while measuring the head over the notch. Calculate the percentage error in the discharge. Take $C_d = 0.62$.
- 20. (a) The efficiency η of a fan depends on the density ρ, the dynamic CO5-U (16) viscosity μ of the fluid, the angular velocity ω, diameter D of the rotor and discharge Q. Express η in terms of dimensionless parameters.

Or

(b) A centrifugal pump is to discharge 0.118 m³/s at a speed of 1450 CO5-U (16) r.p.m. against a head of 25 m. The impeller diameter is 250 mm, its width at outlet is 50 mm and manometric efficiency is 75 %. Determine the vane angle at the outer periphery of the impeller.