
A		Reg. No. :											
Question Paper Code: 53A03													
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018													
Third Semester													
Agricultural Engineering													
15UAG303 - FUNDAMENTALS OF ENGINEERING MECHANICS													
(Regulation 2015)													
Duration: Three hours Maximum: 100 Marks								5					
Answer ALL Questions													
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$													
1.	The process of finding of	out the resultant fo	rce is	calle	ed_			_of	forc	es.		CO	1 - R
	(a) Composition	(b) Two Points	(c) Pa	arall	el Pla	ane	(d)	Perp	bendi	cula	r Pla	ne
2.	A weight of 1000 N can ratio is 20, the machine	0 N can be lifted by an effort of 80 N. If the velocity nachine is							CO	1 - R			
	(a) Reversible (b) $\sqrt{p^2}$	$2^2 + Q^2 + 2PQ\cos\theta$	(c) v	P ² +	Q ²	2 <i>PQ</i>	cosθ	((d) √	P ² +	Q ² -	2 <i>PQ</i> t	anθ
3.	Whenever a force acts displacement, then	s on a body and the body undergoes a						CO	2- R				
	(a) One Horizontal Read	ction	(b) W	/ork	is sa	id to	be c	lone				
	(c) One Vertical Reaction	on	(d) A	ll of	the	Abov	ve					
4.	A couple produces											CO	2- R
	(a) Rotational motion		(b) C	onst	itute	a mo	omer	nt				
	(c) Constitute a couple		(d) C	onst	itute	a mo	omer	nt of	coup	ole		
5.	Polar Moment of Inertia	follows										CO	3- R
	(a) Parallel Axis Theore	m	(b) C	entr	oidal	Axis	s The	eorei	m			
	(c) Perpendicular Axis	Theorem	(d) R	adiu	s of	Gyra	tion					

6.	The point, through which the whole weight of the body acts, irrespective of its position, is known as									
	(a) Point, Weight (b) Centre of gravity	(c) Line, Mass	(d) Lamina, Mass							
7.	The resultant of the two forces P and Q in new resultant is perpendicular to P . Then	wo forces P and Q is R. If Q is doubled, the CC adjustment of P . Then								
	(a) $P = Q$ (b) $Q = R$	(c) -3.33 m/s2	(d) 20 m/s2							
8.	The Momentum		CO4- R							
	(a) Mass x Velocity	nt								
	(c) Mass x Acceleration	(d) Mass x Gravitational Force								
9.	The friction experienced by a body, when in motion, is known as CO5- F									
	(a) Coefficient of friction	(b) Angle of response								
	(c) Angle of friction	(d) Dynamic friction								
10.	Angular Velocity	CO5- R								
	(a) Linear Displacement x radius	dius								
	(c) Linear Displacement / radius (d) Linear velocity / radius									
	$PART - B (5 \times 2 = 10 Marks)$									
11.										
12.	State Varignon's Principle.									
13.	Define centroidal axis.									
14.	Define rolling friction.									
15.	State any four coulomb's law of dry friction.									
PART – C (5 x 16= 80Marks)										
16.	 (a) Two forces P and Q are applied as shown Figure 1 at point A of a CO1- App (16) hook support. Knowing that P =15 N and Q = 25 N, determine the magnitude and direction of their resultant using (a) the parallelogram law, (b) the triangle law 									

(b) the triangle law.

(b) Find the resultant of given force system as shown in figure 2. CO1- App (16)

¢

Figure - 2

17. (a) Three cylinders weighting 100 N each and of 80 mm diameter CO2- App (16) are placed in a channel of 180 mm width as shown in Figure 3. Find the reactions at the surfaces of contact.

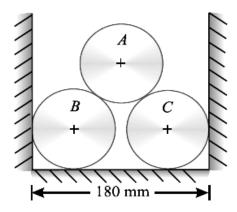


Figure - 3 3

(b) Four forces of magnitude 15N, 25N, 35N and 45N are acting CO2- App (16) respectively along the four sides of square ABCD as shown in figure 4. Determine the resultant moment about the point A. Each side of the square is 3m.

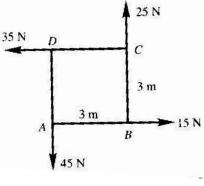
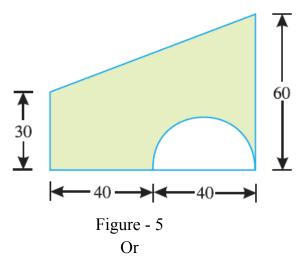
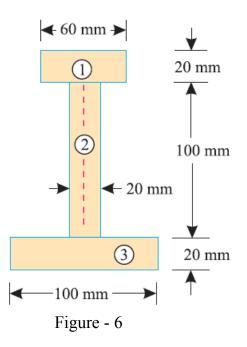




Figure - 4

18. (a) A semicircular area is removed from a trapezium as shown in CO3- App (16)
 Figure 5. Determine the centroid of the remaining area (shown hatched). All dimensions in cm.

(b) A I-section is made up of three rectangles as shown in figure 6. CO3- App (16) Find the moment of inertia of the section about the horizontal axis passing through the centre of gravity of the section.

19. (a) A soldier fires a bullet at an angle of 30⁰ (upward from the CO4- App (16) horizontal) from his position on hill to strike a target which is 61m lower than the position of the soldier. The initial velocity of the bullet is 91.5m/s. Calculate

(i) The maximum height to which the bullet will rise above the horizontal.
(ii) The actual velocity with which it will hit the target.
(iii) The total time required for the flight of bullet.

- (b) A sphere of mass 1 kg moving with a velocity of 2 m/s impinges CO4-U (16) directly on a sphere of mass 2 kg at rest. If the first mass comes to rest after the impact, find the final velocity of the second sphere and the co-efficient of restitution.
- 20. (a) A block of weight 150N is resting on a rough inclined plane as CO5- App (16) shown in figure. 7. The block is tied up by a horizontal string, which has a tension of 50N. Find
 - (i) The frictional force on the block.
 - (ii) The normal reaction of inclined plane.

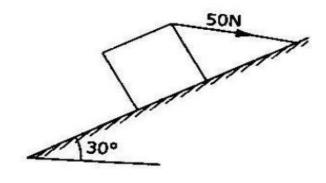


Figure - 7

Or

(b) The coefficient of friction between the blocks A & B is 0.3 and CO5- App (16) block B and horizontal plane is 0.25. If a force of P = 900 N is applied as shown in figure 8. Find the resultant of frictional force on 150 kg block.

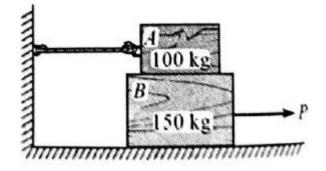


Figure - 8