Reg. No.:					

Question Paper Code: 54A05

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fourth Semester

Agricultural Engineering

15UAG405- FUNDAMENTALS OF THERMODYNAMICS

(Regulation 2015)

(Provide Scientific Calculator, Psychrometry Chart)

Duration: Three hours			Maximum: 100 Marks				
		PART A - (10 x	1 = 10 Marks)				
1.	General gas equation i	is		CO1 -R			
	(a) PV=nRT	(b) PV=mRT	(c) $PV = C$	(d) PV=KiRT			
2.	The value of one bar (in SI units) is equal to		CO1 -R			
	(a) 100 N/m^2	(b) $1 \times 10^5 \text{ N/m}^2$	(c) $1 \times 10^4 \text{ N/m}^2$	(d) $1 \times 10^6 \text{ N/m}^2$.			
3.	Carnot engine is a			CO2 -R			
	(a) Reversible engine		(b) Irreversible engine				
	(c) Possible engine		(d) Refrigerator				
4.	For any reversible process, the change in entropy of the system and surroundings is			CO2- R			
	(a) zero	(b) unity	(c) negative	(d) positive			
5.	The latent heat of vapo	ourisation at critical po	oint is	CO3 -R			
	(a) less than zero	(b) greater than zero	(c) equal to zero	(d) 2257 kJ/kg			
6.	Dryness fraction is ex	Oryness fraction is experimentally measured by					
	(a) Throttling calorime	erer	(b) venturimeter				
	(c) nanometer		(d) thermometer				
7.	Boyle's low states that volume of given mass of a gas varies inversely with its absolute pressure when the remains constant			CO4 -R			
	(a) volume	(b) temperature	(c) entropy	(d) atmosphere			

8.	The valu	ue of the unive	ersal gas constant is		CO4 -I	?	
	(a) 8.314	4 J/kg K	(b) 83.14 kJ/kg K	(c) 848 kJ/kg K	(d) 8.314 kJ/kg K		
9.	In an un	saturated air t	he state of a vapour is		CO5 -I	3	
	(a) wet		(b) superheated	(c) saturated	(d) unsaturated.		
10.	At dew j	point tempera	ture		CO5- I	3	
	(a) water	vater vapour begins to condense (b) vapour is competely cl			hanged in to water		
	(c) water is directly changed in to ice (d) ice is directly changed				_		
	. ,	·	PART – B (5 x				
11.	What is	the difference	·	·	CO1- I	R	
12.							
13.							
14.	•						
	C				CO4- R		
15.	What is	the difference	between DBT and W		CO5- I	₹	
			PART – C (5	5 x 16= 80Marks)			
16.	0.0 pol cor pro pla	28m ³ .The air sytrophic process that temperates are revenues.(b)find	is expanded at constess with n=1.5 is then ature process which deriversible.(a)sketch the	and 700 kpa, and occupies tant pressure to 0.084m ³ . An exarried out, followed by a completes a cycle. All the cycle in T-S and P-V received and heat ncy of the cycle.	CO1- R (16	i)	
	and ent kJ/ are (i) (ii)	the power halpies of gas kg respectivel 50 m/s and 1 The rate at wh	developed by the tues at the inlet and out y, and the velocity of 10 m/s respectively. Conich heat is rejected to		CO1 -App (16	i)	

17.	(a)	Two-Carnot engine A and B are operated in series. The first one A receives heat at 870K and rejects to a reservoir at temperature T. The second engine B receives the heat rejected by the first engine and in turn rejects to a heat reservoir at 300K. Calculate the intermediate temperature T in ^o C between two heat engines for the following cases. (a) The work output of the two engines are equal and The efficiencies of the two engines are equal.	CO2- R	(16)			
	(b)	(i) Prove that entropy is a property of a system.	CO2 -U	(8)			
		(ii) What are the characteristics of entropy.	CO2 -U	(8)			
18.	(a)	A vessel of volume 0.04m^3 contains a mixture of saturated water and steam at a temperature of 250^0C . The mass of the liquid present is 9kg. Find the pressure, mass, specific volume, enthalpy, entropy and internal energy of the mixture. Or	CO3 -Ana	(16)			
	(b)	Describe the different operations of Rankine cycle. Derive also the expression for its efficiency.	CO3 -Ana	(16)			
19.	(a)	Consider an ideal gas at 303K and 0.86m³/kg. As a result of some disturbance the state of the gas changes to 304K and 0.87 m³/kg. Estimate the change in pressure of the gas due to the result of this disturbance.	CO4- U	(16)			
Or							
	(b)	Derive Clausius Clapeyron equation and explain its importance.	CO4 -U	(16)			
20.	(a)	An air-water vapour mixture enters an adiabatic saturator at 30°C and leaves at 20°C, which is the adiabatic saturation temperature. The pressure remains constant at 100 kPa. Determine the relative humidity and humidity ratio of the inlet mixture. Or	CO5 -Ana	(16)			
	(b)	On a skeleton Psychrometric chart show the following processes and explain. (i) Sensible heating (ii) Sensible cooling (iii) Cooling and humidification (iv) Heating and dehumidification	CO5- U	(16)			