Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Maximum: 100 Marks

Question Paper Code: 52164

M.E. DEGREE EXAMINATION, NOV 2016

First Semester

Structural Engineering

15PMA125 - APPLIED MATHEMATICS FOR STRUCTURAL ENGINEERING

(Regulation 2015)

Duration: Three hours

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

1. $F\left[\frac{\partial^2 u}{\partial x^2}\right]$

- (a) $\alpha u(\alpha,t)$ (b) $\alpha^2 u(\alpha,t)$ (c) $-\alpha u(\alpha,t)$ (d) $-\alpha^2 u(\alpha,t)$
- 2. For one point Gaussian Quadrature the sampling point is at
 - (a) $\xi = 0$ (b) $\xi = 2$ (c) $\xi = 3$ (d) $\xi = 1$
- 3. Suppose 'f' is independent of 'y' then the solution of Euler's equation is

(a)
$$\frac{\partial F}{\partial y'} = c$$
 (b) $\frac{\partial F}{\partial y} = c$ (c) $\frac{\partial F}{\partial x} = c$ (d) $\frac{\partial F}{\partial x'} = c$

4. To find the smallest eigen values of the matrix then use

- (a) Faddeev-Leverrier Method (b) Power method
- (c) Rayley-Ritz method (d) Approximation Method
- 5. The maximum likelihood estimate are
 - (a) Inconsistent (b) consistent
 - (c) not biased (d) none of these

PART - B (5 x 3 = 15 Marks)

- 6. Define laplace transform of unit step function and find its Laplace transform.
- 7. Define Monte method.
- 8. If y is independent of y, then give the reduced form of the Euler's equation.
- 9. Find the largest eigen value of $\begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$ by Power method.
- 10. Define un-biasedness of a good estimator.

PART - C (5 x
$$16 = 80$$
 Marks)

11. (a) A string is stretched and fixed between two fixed points (0, 0) and (1, 0). Motion is initiated by displacing the string in the form $u = sin\left(\frac{\pi x}{l}\right)$ and released from rest at time t=0.Find the displacement of any point on the string at any time t. (16)

Or

(b) Solve the following IBVP using the Laplace transform technique

PDE:
$$u_t = u_{xx}$$
, $0 < x < 1$, $t > 0$
BCs: $u(0, t) = 1$, $u(1, t) = 1$, $t > 0$
ICs: $u(x, 0) = 1 + \sin \pi x$, $0 < x < 1$. (16)

- 12. (a) (i) Solve the equations by successive over relaxation method by assuming $\beta = 1.2$ with Starting vector is (1.5, 0, 3.5), $2x_1-x_2 = 3$, $-x_1+2x_2-x_3 = 0$, $-x_2+2x_3 = 7$. (8)
 - (ii) Solve the equation by Choleski method: 4x + 6y + 8z = 0, 6x + 34y + 52z = -160, 8x + 52y + 129z = -452. (8)

Or

(b) (i) Using Gaussian three point formula evaluate $\int_{-1}^{1} \frac{x^2}{1+x^2} dx$ and compare with exact solution. (8)

(ii) Evaluate
$$\int_{1}^{22} \frac{dxdy}{x+y}$$
 by Gaussian quadrature formula. (8)

52164

13. (a) (i) By applying Ritz method, find the extremal of $I[y(x)] = \int_{0}^{1} (y'^{2} + y^{2}) dx$ with

$$y(0) = 0, y(1) = 1.$$
 (8)

(ii) Find the plane curve of a fixed perimeter and maximum area. (8)

Or

(b) Show that the curve which extremizes the functional I = $\int_{0}^{\frac{\pi}{4}} (y^{11^{2}} - y^{2} + x^{2}) dx$ under the

conditions
$$y(0) = 0$$
, $y'(0) = 1$, $y(\frac{\pi}{4}) = y'(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$. (16)

14. (a) Find the resolvent of the matrix $A = \begin{pmatrix} -2 & -2 & -4 \\ 2 & 3 & 2 \\ 3 & 2 & 5 \end{pmatrix}$ by Faddeev-Leverrier method. (16)

Or

(b) Using Power method find all the Eigen values of A =
$$\begin{pmatrix} 1 & -3 & -2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{pmatrix}$$
. (16)

15. (a) Find the maximum likelihood estimate for the parameter λ of a Poisson distribution on the basis of a sample of size n. Also find its variance. Show that the sample mean \overline{x} is sufficient for estimating the parameter λ of the Poisson distribution. (16)

Or

- (b) (i) In a trivariate distribution $r_{12} = 0.7$, $r_{13} = r_{23} = 0.5$. Find the partial correlation coefficient $r_{12.3}$ and multiple correlation coefficients $R_{1.23}$. (8)
 - (ii) In a random sampling from normal population $N(\mu, \sigma^2)$, find the maximum likelihood estimators for μ when σ^2 is known. (8)

#