Question Paper Code: 52114

M.E. DEGREE EXAMINATION, NOV 2016

First Semester

CAD / CAM

15PMA124 - ADVANCED NUMERICAL METHODS

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART	A - (5	x 1 =	= 5 N	Iarks)
------	--------	-------	-------	--------

1. The root of the equation $x^3 - 2x - 5 = 0$ lies between

	(a) 0 and 1	(b) 1 and 2	(c) 2 and 3	(d) 3 and 4	
2.	The Error of Runge kutta fourth order is				
	(a) $O(h^3)$	(b) O (h^2)	(c) O (h^5)	(d) $O(h^4)$	

- 3. Hyperbolic equation is
 - (a) $4u_{xx} 3u_{xy} + 2u_{yy} = 0$ (b) $4u_{xx} - 6u_{xy} + 2u_{yy} = 0$ (c) $u_{xx} - 3u_{xy} + 12u_{yy} = 0$ (d) $u_{xx} - 2u_{xy} + u_{yy} = 0$
- The Laplace equation is 4.

(a) Hyperbolic	(b) elliptic	(c) parabolic	(d) none of these
----------------	--------------	---------------	-------------------

- Which method is called "Weighted residual method"? 5.
 - (a) Least square method (c) Galerkin method
- (b) Collocation method
 - (d) Rayleigh-Ritz method

- 6. Define partial pivoting.
- 7. What is meant by orthogonal collocation?
- 8. State the explicit scheme formula for the solution of the wave equation.
- 9. Write down the finite difference scheme to solve Poisson's equation.
- 10. Define a difference quotient.

PART - C (5 x
$$16 = 80$$
 Marks)

11. (a) Use Faddeev's method to find the eigen values of the matrix $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{pmatrix}$ and hence find its inverse. (16)

Or

- (b) Solve the following system of equations by Gauss-Jacobi's method: 27x + 6y - z = 85, x + y + 54 z = 110, 6x + 15y + 2z = 72 (16)
- 12. (a) Find y (0.1), y (0.2) and y (0.3) using R-K method of fourth order given $\frac{dy}{dx} = \frac{1}{2} (1+x) y^2, y (0) = 1.$ Continue your calculation to find y (0.4) using Adams method. (16)

Or

- (b) Solve the boundary value problem xy'' + y = 0, y (1) = 1 and y (1.25) = 1.3513 by shooting method. Take h = 0.25 and assume the initial guesses for y' (1) as 1.2 and 1.5. (16)
- 13. (a) Solve $u_{tt} = u_{xx}$ up to t = 0.5 with a spacing of 0.1 subject to y (0, t) = 0, y(1, t) = 0, y(x, 0) = 0 and y(x, 0) = 10 + x(1-x). (16)

Or

(b) Solve $u_{tt} = 4 u_{xx}$ with boundary conditions u(0, t) = 0 = u(4, t), t > 0 and the initial conditions (x,0) = 0, u(x,0) = x(4-x). (16)

14. (a) Solve the Poisson equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ subject to the condition u = 0 at x = 0 and x = 3, u = 3, u = 0 at y = 0 and u = 1 at y = 3 for 0 < x < 3. Find the solution taking h = 1 with a square. (16)

Or

- (b) By iteration method, solve the Laplace equation u_{xx} + u_{yy} = 0, over the square region, satisfying the boundary conditions:
 u(0, y) = 0, 0 ≤ y ≤ 3, u(3, y) = 9 + y, 0 ≤ y ≤ 3, u(x, 0) = 3x, 0 ≤ x ≤ 3, u(x, 3) = 4x, 0 ≤ x ≤ 3.
- 15. (a) Solve the Poisson $u_{xx} + u_{yy} = -2$, $0 \le x, y \le 1$ with the condition u=0 on the boundary of the square $0 \le x \le 1, 0 \le y \le 1$ using finite element method. (16)

Or

(b) Using Galerkin technique, solve the Poisson's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = k, \ 0 < x, y < 1,$ with u = 0 on the boundary *C* of the region *R*. (16)

#