Question Paper Code: 52109

M.E. DEGREE EXAMINATION, NOV 2016

Elective

CAD / CAM

15PCD522 - DESIGN AND ANALYSIS OF EXPERIMENTS

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

 $(5 \times 20 = 100 \text{ Marks})$

1. (a) In a small town, a hospital is planning for future needs in its maternity ward. The data in given table, show the number of births in the last eight years.

Year:	1	2	3	4	5	6	7	8
Births:	565	590	583	597	615	611	610	623

- (i) Develop a simple linear regression model to the data for estimating the number of births
- (ii) Test the significance of regression using *F*-test. (20)

Or

- (b) (i) Explain the various steps involved in experiment design process. (10)
 - (ii) Discuss the linear regression model in detail. (10)
- 2. (a) Four different printing processes are being compared to study the density that can be reproduced. Density readings are taken at different dot percentages. As the dot percentage is a source of variability, a completely randomized block design has been used and the data obtained are given in the table . Analyze the data and draw the conclusions. Use $\alpha = 0.05$.

Type of process	Dot percentages (Block)				
	1	2	3	4	
Offset	0.90	0.91	0.91	0.92	
Inkjet	1.31	1.32	1.33	1.34	

Dye sub	1.49	1.54	1.67	1.69
Thermal wax	1.07	1.19	1.38	1.39

(20)

Or

- (b) Develop the analysis of covariance for randomized block design with one Co-commitant variable, stating clearly the assumptions. (20)
- 3. (a) Explain in detail about three factor full factorial experiments with suitable example.

(20)

Or

(b) A study was conducted using a 2^3 factorial design with factors *A*, *B* and *C*. The data obtained are given in below table.

Treatment	Response		
combination	R ₁	R_2	
(1)	15	12	
a	17	23	
b	34	29	
ab	22	32	
с	18	25	
ac	5	6	
bc	3	2	
abc	12	18	

Analyze the data assuming that each replicate (*R*1 and *R*2) as a block of one day.

(20)

4. (a) Construct a 2^{5-2} design with *ACE* and *BDE* as generators. Determine the alias structure. (20)

Or

- (b) Explain in detail about approximate F-tests. (20)
- 5. (a) (i) Illustrate the applications of orthogonal arrays. (10)
 - (ii) Discuss about various controllable and noise factors. (10)

Or

(b) Construct a case study for the three types of signal-to-noise ratio (S/N Ratio) used in taguchi's robust design.
(20)