Reg. No. :			
------------	--	--	--

Question Paper Code: 41632

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2016

Third Semester

Instrumentation and Control Engineering

14UIC302 - DIGITAL LOGIC CIRCUITS AND DESIGN

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 1 = 10 Marks)

1. The Hexadecimal equivalent of a decimal number 48 is

(a) 2B (b) 2E (c) 2F (d) F2

- 2. What are the symbols used to represent digits in the binary number system?
 - (a) 0,1 (b) 0,1,2 (c) 0 through 8 (d) 1,2
- 3. What is ROM?
 - (a) repeat on memory (b) read on memory
 - (c) read only memory (d) repeat only memory

4. In PROM, we can

- (a) store the data once and read multiple times(b) store and erase data once(c) store and erase data multiple times(d) store once and read once
- 5. Select the correct characteristic equation of a SR flipflop.

(a) $\mathbf{Qn} + 1 = \mathbf{S} + \mathbf{RQn}$	(b) $\mathbf{Q}\mathbf{n} + 1 = \mathbf{S} + \mathbf{R}\mathbf{Q}\mathbf{n}$
(c) $\mathbf{Q}\mathbf{n} + 1 = \mathbf{S} + \mathbf{R}\mathbf{Q}\mathbf{n}$	(d) none of the above

6.	Which type of gate	can be used to add tw	o bits?				
	(a) Ex-OR	(b) Ex-NOR	(c) Ex-NAND	(d) NOR			
7.	7. The next state variables in asynchronous sequential circuits are called						
	(a) secondary variables(c) primary variables		(b) excitation variable(d) short term memory	y			
8.	In ASM, the decisio	n box is represented l	ру				
	(a) circle	(b) oval	(c) diamond	(d) rectangle			
9.	Which of the follow	ing logic family has t	he shortest propagation de	lay?			
	(a) CMOS	(b) NMOS	(c) ECL	(d) 74Sxx			
10	The VHDL is based	on the libr	ary				
	(a) IEE	(b) WORK	(c) IEEE	(d) Standard			
		PART - B (5 x 2 = 10 Marks)				
11.	State Demorgan's T	heorem.					
12	Define fan in and fa	n out.					
13	Compare combination	onal and sequential ci	rcuits				
14	What is race around	condition?					
15	List the configuration	on of TTL.					
		PART - C (5	5 x 16 = 80 Marks)				
16	(a) Reduce the follo	owing functions using	K-map techniques.				
	(i) f (A, B, C, 1 (ii) f (A, B, C, 1	D) = $\sum m (0, 1, 2, 3, 5)$ D) = $\prod M (0, 3, 4, 7, 4)$, 7, 8, 9, 11, 14) 8, 10, 12, 14) + d (2, 6)		(8) (8)		
			Or				
	(b) (i) Design a 2	bit magnitude compar	ator.		(8)		
	(ii) Explain the	operation of 4 to 10 c	lecoder.		(8)		
17.	17. (a) Design and draw 4 bit binary to gray code converter and explain.						

Or

(b) (i) Explain in detail about PLA with a specific example.	(8)				
(ii) Explain with neat diagrams RAM architecture.	(8)				
18. (a) (i) Realize a SR flip flop using NAND gates and explain its operation.	(8)				
(ii) Design a 3-bit binary up-down counter	(8)				
Or					
(b) Design a four state down counter using T flip flop.	(16)				
19. (a) Draw the fundamental mode asynchronous circuit and explain in detail.	(16)				
Or					
(b) (i) What is the procedure for obtaining the transition table form the circuit an asynchronous sequential circuit?	diagram of (8)				
(ii) Discuss in detail the race conditions.	(8)				
20. (a) Explain the various modeling methods used in VHDL with an example.	(16)				
Or					
(b) (i) Write VHDL code for a full sub tractor using logic Equation.	(8)				
(ii) Write a VHDL description of an S-R latch using a process.	(8)				