Reg. No.:					

Question Paper Code: 51336

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2016

Third Semester

Electrical and Electronics Engineering

15UEE306 - DIGITAL LOGIC CIRCUITS

(Regulation 2015)

Duration: Three hours Maximum: 100 Marks

		Answer ALL Q	uestions					
	PART A - $(10 \times 1 = 10 \text{ Marks})$							
1.	In standard TTL the 'totem pole' stage refers to the							
	(a) multi-emitter input s(c) output buffer	`	(b) phase splitter(d) open collector output stage					
2.	What is the gray code for 10	000?						
	(a) 1010	(b) 1000	(c) 1011	(d) 1100				
3.	3. The digital multiplexer is basically a combination logic circuit to perform the operation of							
	(a) AND-AND	(b) OR-OR	(c) AND-OR	(d) OR-AND				
4.	A combinational circuit that	performs the addi	tion of two bits is calle	d				
	(a) Full adder	(b) Full subtractor	r (c) Half subtractor	(d) Half adder				
5.	The output Q_n of a J-K flip The input J_n and K_n are resp	•	ange to one when a clo	ock pulse is applied.				

(b) 0 and *X*

(a) 1 and *X*

(c) *X* and 0

(d) *X* and 1

6.	A flip-	flop output transition	serves as clock to ne	ext flip-flop is called			
	(a) ripple counter(c) shift register			(b) parallel counter(d) none of the above			
7.	An un	wanted switching tran	asients occurs at the o	output of a circuit are			
	(a)) races	(b) cycles	(c) hazards	(d) harmonics		
8.	A PLA	A can be used					
	(a) as a microprocessor(c) to realize a sequential logic			(b) as a dynamic memory(d) to realize a combinational logic			
9.	Which	one is unary operator	r in VHDL?				
	(a)) +(sign)	(b) not	(c) mod	(d) rol		
10.	Which	is used to verify the	design function?				
	(a)) packages	(b) libraries	(c) test bench	(d) subprogram		
			PART - B (5 x $2 = 10$	0 Marks)			
11.	Define	e fan-in and fan-out.					
12.	Give the	he application of dem	ultiplexer.				
13.	Disting	guish between sync	hronous sequential	circuits and async	hronous sequential		
14.	Define	e race in asynchronous	s sequential circuit.				
15.	What i	is test bench in VHDI	٠.				
		I	$PART - C (5 \times 16 = 8)$	30 Marks)			
16.	(a) (i)	Write a brief notes	about error detection	and correction codes	. (8)		
	(ii) Explain the operation	on and characteristics	s of DTL circuit.	(8)		
			Or				
	(b) (i)	Explain the operation with Tottem pole or		circuit diagram for 2	2 input NAND gate (12)		
	(ii) Write short notes or	•		(4)		

17. (a) Reduce the following using K-map

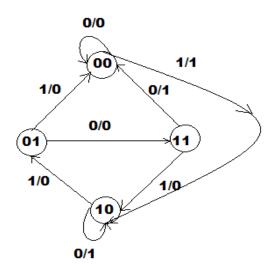
(i)
$$F(w, x, y, z) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$
 (4)

(ii)
$$g(w, x, y, z) = \sum m(1, 3, 4, 6, 11) + \sum d(0, 8, 10, 12, 13)$$
 (4)

(iii)
$$Y = (A, B, C, D) = \prod M(0, 2, 8, 9, 12, 13, 15)$$
 (4)

(iv)
$$Y = (A, B, C, D) = \prod M(1, 2, 3, 8, 9, 10, 11, 14) + d(7, 15).$$
 (4)

Or


- (b) (i) Implement Excess 3 to BCD code converter circuit. (8)
 - (ii) Implement the given boolean function using 4:1 Multiplexer,

$$F(A, B, C, D) = \sum m(0, 1, 2, 4, 6, 9, 12, 14). \tag{8}$$

- 18. (a) (i) Design a 4-bit synchronous up-counter using JK flip flop. (8)
 - (ii) Using D-flip flop, design a synchronous counter which counts in the sequence 000, 001, 010, 011, 100, 101, 110, 111, 000. (8)

Or

(b) Design a sequential circuit with JK flip-flop.

19. (a) Discuss the different types of hazards that occurs in asynchronous sequential circuits and combinational circuits. (16)

Or

(b) Explain with a suitable example the procedure for analyzing synchronous sequential circuit. (16)

(16)

20.	(a)	(i)	Write a VHDL code for a full adder.	(8)
		(ii)	Explain the operation of RTL data path design with suitable diagram.	(8)
			Or	
	(b)	Wr	te a VHDL code for SR flip flop and D flip flop.	(16