Reg. No.	:	
----------	---	--

Question Paper Code: 41044

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2016

Fourth Semester

Electronics and Communication Engineering

01UMA424 - PROBABILITY AND RANDOM PROCESSES

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

(Statistical tables may be permitted)

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. For a binomial distribution mean is 6 and S.D is $\sqrt{2}$. Find the first two terms of the distribution.
- 2. Define exponential distribution.
- 3. State the equations of the two regression lines. What is the angle between them?
- 4. State the equations of the two regression lines. What is the angle between them?
- 5. Define: Wide sense stationary random process.
- 6. Consider a Markov chain with state {0, 1} transition probability matrix $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Is the state 0 periodic? If so, what is the period?
- 7. Define: Power spectrum.
- 8. Write down the Wiener-Khintchine theorem.
- 9. Define a system. When is it called as linear system?
- 10. Define White noise.

PART - B ($5 \times 16 = 80$ Marks)

11. (a) (i) A random variable X has p.d.f $f(x) = \begin{cases} kx^2 e^{-x}; x > 0\\ 0, otherwise \end{cases}$. Find the rth moment of X

about origin. Hence find the mean and variance. (8)

(ii) A random variable X is uniformly distributed over (0, 10).

Find (i)
$$P(X < 3)$$
, $P(X > 7)$ and $P(2 < X < 5)$
(ii) $P(X = 7)$. (8)

Or

- (b) (i) The density function of a random variable X is given by $f(x) = Kx (2 - x), \ 0 \le x \le 2$. Find K, mean, variance and rth moment. (8)
 - (ii) Define binomial distribution. Also obtain its moment generating function and hence the mean and variance.
- 12. (a) If X and Y are the independent random variables with probability density function

$$f(x, y) = \begin{cases} 4xy \ e^{-(x^{2} + y^{2})}, & x \ge 0, \ y \ge 0\\ 0 & elsewhere \end{cases}$$

Find the density function of $U = \sqrt{x^2 + y^2}$. (16)

Or

(b) (i) Calculate the correction coefficient for the following data. (8)

Х	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

- (ii) In a correction analysis, the equation of the two regression lines are 3x + 12 y = 19and 3x + 9 y = 46. Find the value of the correction coefficient. (8)
- 13. (a) (i) If $\{X(t)\}\$ is a WSS process with autocorrelation $R(\tau) = Ae^{-\alpha |\tau|}$, determine the second order moment of the $RV\{X(8) X(5)\}$. (8)
 - (ii) If the WSS process {x (t)} is given by X(t)=10cos(100t+θ), where θ is uniformly distributed over (-π,π), prove that {x (t)} is correlation ergodic.
 (8)

- (b) (i) If the WSS process $\{X(t)\}$ is given by $X(t) = 10 \cos(100t+\Theta)$ where Θ is uniformly distributed over $(-\pi, \pi)$. Prove that $\{X(t)\}$ is correlation ergodic. (8)
 - (ii) Find the mean and autocorrelation of the Poisson process. (8)
- 14. (a) State and Prove Wiener-Khintchine theorem, and hence find the power Spectral density of a WSS process X(t) which has an autocorrelation

$$R_{xx}(\tau) = A_0 \left[1 - \frac{|\tau|}{T} \right], \quad -T \le \tau \le T.$$
(16)

Or

- (b) (i) The autocorrelation function for a stationary process X(t) is given by $R_{XX}(\tau) = 9 + 2e^{-|\tau|}$. Find the mean of random variable $Y = \int_{0}^{2} X(t) dt$ and variance of X(t). (8)
 - (ii) Consider two random process $X(t) = 3 \cos(wt + \Phi)$ and $Y(t) = 2\cos(wt + \Phi \pi/2)$ where Φ is a random variable uniformly distributed in $(0,2\pi)$. Prove that $\sqrt{R_{XX}(0)R_{YY}(0)} \ge |R_{XY}(\tau)|$. (8)
- 15. (a) (i) Show that if the input x(t) is a WSS process for a linear system, then output y(t) is a WSS process.
 (8)
 - (ii) If X(t) is the input voltage to a circuit and Y(t) is the output voltage. X(t) is a stationary random process with μ_x = 0 and R_{xx}(τ) = e^{-2|τ|}. Find mean μ_y and power spectrum S_{yy}(ω) of the output if the system transfer function is given by
 H (ω) = 1/(iω + 2).

Or

- (b) (i) Show that $s_{yy}(\omega) = |H(\omega)|^2 s_{xx}(\omega)$ where $s_{xx}(\omega)$ and $s_{yy}(\omega)$ are the power spectral density functions of the input X(t) and the output Y(t) and $H(\omega)$ is the system transfer function. (8)
 - (ii) The input to the RC filter is a white noise process with ACF $R_{XX}(\tau) = \frac{N_0}{2} \delta(\tau)$. If

the frequency response $H(\omega) = \frac{1}{1 + j\omega RC}$, find the autocorrelation and the meansquare value of the output process Y(t). (8)