Reg. No. :

Question Paper Code: 41454

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2016

Fifth Semester

Electronics and Communication Engineering

14UEC504 - TRANSMISSION LINES AND WAVEGUIDES

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

(Smith chart may be permitted)

PART A - (10 x 1 = 10 Marks)

1. Which stands for *dB* relative level?

(a) <i>dBrn</i>	(b) <i>dBa</i>	(c) dBr	(d) <i>dBx</i>

2. One decibel equals to

(a) 5.356N (b) 8.686N (c) 7.635N (d) None of these

3. A transmission line is terminated in a load equal to its characteristic impedance. The reflection coefficient is

(a) plus one (b) minus one (c) zero (d) infinity

4. Short-circuited stubs are preferred to open circuited stubs because the latter are

(a) more difficult to make and connect

- (b) made of transmission line with a different Z_0
- (c) liable to radiate
- (d) incapable of giving full range of reactance

5.	5. In a transmission line with standing waves, distance between a voltage maxima and adjacent-minima is					
	(a) λ/4	(b) λ/8	(c) $\lambda/2$	(d) λ		
6.	A Smith chart is used for s	olving problems in				
	(a) radio wave propagation(c) antenna systems		(b) transmission line(d) power transfer problems			
7.	. Dominant mode in TE waves in parallel waveguide is					
	(a) TE11	(b) TE10	(c) TE01	(d) TE02		
8.	8. Relationship between λ_g , λ_0 and λ_c is					
	(a) $\lambda_g = \lambda_0 + \lambda_c$		(b) $\frac{1}{\lambda_g} = \frac{1}{{\lambda_0}^2} - \frac{1}{{\lambda_c}^2}$			
	(c) $\frac{1}{\lambda_g} = \frac{1}{{\lambda_0}^2} + \frac{1}{{\lambda_c}^2}$		(d) $\lambda_c = \lambda_g + \lambda_0$			
9. Dominant mode in circular cavity resonator is						
	(a) TM ₀₁₀	(b) TM ₁₁₁	(c) TM ₁₀₁	(d) TM ₁₀₀		
10. Principal mode is						
	(a) TE mode	(b) TM mode	(c) TEM mode	(d) None		
PART - B (5 x $2 = 10$ Marks)						
11. Define propagation constant.						
12. Define reflection coefficient.						
13. Why is a quarter wave line called as impendence inverter?						
14. Why are rectangular wave-guides preferred over circular wave-guides?						

15. What are the root values for the TE modes?

PART - C (5 x
$$16 = 80$$
 Marks)

- 16. (a) (i) Design a constant k low pass filter and derive the expression for phase shift and attenuation. (10)
 - (ii) At what frequency will a prototype T-section low pass filter having a cut off frequency f_c , have an attenuation of 10 dB? (6)

41454

- (b) Derive an m-derived band pass constant–k filter. (16)
- 17. (a) A transmission line has the following primary constants measured per km, $R = 10.15 \ \Omega$, $L = 3.93 \ mH$, $C = 0.00797 \mu F$, $G = 0.29 \mu mho$. Determine Z_0 and propagation constant at a frequency of $796H_z$. Also calculate at the sending end if the line is terminated in its characteristic impedance. (16)

Or

- (b) Obtain the general expression for current and voltage at any point along a transmission line. (16)
- 18. (a) A lossless transmission line with $Z_0 = 75 \ \Omega$ and of electrical length $l = 0.3\lambda$ is terminated with load impedance of $Z_R = (40 + j20) \ \Omega$. Determine the reflection coefficient at load, SWR of line, input impedance of the line. (16)

Or

- (b) Using Smith chart, determine the length and location of the stub to produce an impedance match on a line of $R_0 = 600\Omega$ terminated in $200 \angle 0^{\circ}\Omega$. The stub is short circuited at the other end. (16)
- 19. (a) Derive the field component of the wave propagating between parallel planes. (16)

Or

- (b) Derive the electromagnetic field expressions for TM waves guided by a parallel conducting planes. (16)
- 20. (a) Obtain the electromagnetic field equations for TE waves in rectangular waveguides. (16)

(8)

Or

- (b) Explain in detail about
 - (i) Excitation of waveguides (8)
 - (ii) Resonant cavities

#