Reg. No. :	
------------	--

Question Paper Code: 31232

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2016

Third Semester

Computer Science and Engineering

01UCS302 - DATA STRUCTURES

(Regulation 2013)

Duration: Three hours

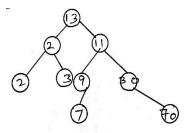
Answer ALL Questions.

Maximum: 100 Marks

(8)

PART A - (10 x 2 = 20 Marks)

- 1. What is an abstract data type?
- 2. What is a doubly linked list?
- 3. Define depth and height of a tree.
- 4. Give the advantages and disadvantages of threaded binary trees.
- 5. List out structural properties of B-tree.
- 6. Define the height balanced tree: "AVL".
- 7. What is rehashing.
- 8. Identify the different properties of an equivalence relation in a set.
- 9. Briefly illustrate the adjacent matrix representation with an example.
- 10. What is bi-connectivity? Give an example.


PART - B (5 x 16 = 80 Marks)

- 11. (a) (i) Implement an algorithm to polynomials represented as single linked list. (8)
 - (ii) Develop algorithm for inserting and deleting values from a queue.

- (b) Write algorithms for push and pop of a stack. Explain how stack is used for the evaluation of expression. Write appropriate algorithm. (16)
- 12. (a) What is a BST? Explain with suitable algorithms for insertion and deletion of nodes at different instances. Illustrate with suitable examples. (16)

Or

(b) Write an ADT for inorder, preorder and postorder traversals. Traverse the given tree using inorder, preorder and postorder traversals. (16)

13. (a) Develop an algorithm to implement a splay tree. Validate the algorithm with a suitable example. (16)

Or

- (b) Explain the concept of insertion and deletion of elements from a MaxHeap. Illustrate with suitable algorithms. (16)
- 14. (a) Explain in detail the path compression techniques. (16)

Or

- (b) (i) How do collisions happen during hashing? Explain the different collision resolving techniques. (10)
 - (ii) Explain about smart union algorithms in detail. (6)
- 15. (a) Explain the Dijkstra's algorithm to shortest path with suitable example. (16)

Or

(b) Write short notes on: (i) Breadth first traversal and (ii) Euler circuits and applications.

(16)