

Question Paper Code: 31254

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2016

Fifth Semester

Computer Science and Engineering

01UCS504 - THEORY OF COMPUTATION

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 2 = 20 Marks)

- 1. Prove that "If *p* is a prime number bigger than 2, then *p* is odd".
- 2. Define NFA with ϵ transition.
- 3. Differentiate L^* and L^+ .
- 4. Write the RE to denote a language L over the input set $\{a, b\}$ such that 3rd character from the right end of the string is always a.
- 5. Construct a CFG for the language $L=\{an, bn\} n \ge 1$.
- 6. Define Pushdown Automata.
- 7. Is it possible that a TM could be considered as a computer of function from integer to integer? If yes justify your answer.
- 8. Can you say the language generated by a CFG in CNF is finite or infinite? If so how? If not why?
- 9. What is a multi-tape Turing machine?
- 10. Define reducibility.

PART - B (5 x
$$16 = 80$$
 Marks)

11. (a) (i) Prove by mathematical induction that for every integer $n\geq 0$ the number $4^{2n+1}+3^{n+2}$ is multiple of 13. (6)

(ii) Show that a language L is accepted by some DFA if and only if L is accepted by some NFA. (10)

Or

(b) Convert the given NFA to DFA NFA $M = \{\{p, q, r, s\}, \{0, 1\}, \delta\{p\}, \{s\}\}$. (16)

states	0	1
р	{ p, q}	р
q	r	r
r	S	-
S	S	S

12. (a) Let *r* be a regular expression. Then prove that there exists a NFA with ϵ transition that accept L(r). (16)

Or

- (b) Construct a DFA with reduced state equivalent to the regular expression 10 + (0+1) 0 * 1. (16)
- 13. (a) (i) Find the language generated by the grammar G with variable S, A, B terminal a, b and productions $S \rightarrow aB$, $B \rightarrow b$, $B \rightarrow bA$, $A \rightarrow ab$. (8)
 - (ii) If G is a grammer $S \rightarrow Sba \mid a$ Prove that G is a ambiguous. (8)

Or

- (b) Construct a PDA accepting $\{a \ n \ b \ m \ a \ n \ | \ m, \ n \ge 1\}$ by empty stack. (16)
- 14. (a) Convert given CFG to GNF where $V = \{S, A\}, T = \{0, 1\}$ and *P* is $S \rightarrow AA / 0 A \rightarrow SS / 1.$ (16)

Or

- (b) (i) Show the context free language are closed under union operation but not under intersection. (10)
 - (ii) Design a Turing machine to accept $L = \{a^n b^n | n \ge 1\}.$ (6)
- 15. (a) Explain Post Correspondence Problem with an example. (16)

Or

(b) Explain in detail about class P and class NP with neat examples. (16)