Maximum: 100 Marks

Question Paper Code: 51032

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2016

Third Semester

Civil Engineering

15UMA321 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to EEE, ECE, EIE, Mechanical and Chemical Engineering Branches)

(Regulation 2015)

Duration: Three hours

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

- 1. In the expansion of *xcosx* as a Fourier series in (-*l*, *l*) the value of a_{n} =
 - (a) 1 (b) -1 (c) l (d) 0
- 2. _____ cannot be expanded as a Fourier series.
 - (a) sinx (b) $x x^3$ (c) tanx (d) cosx
- 3. If F(s) = F[f(x)], then F[f(x-a)] =

(a) $e^{isa} F(s)$ (b) $e^{-isa} F(s)$ (c) $e^{isx} F(s)$ (d) $e^{-isx} F(s)$

- 4. If $f(x) = xe^{-x^2/2}$ is self reciprocal with respect to Fourier sine transform, then $F_s[xe^{-x^2/2}] =$ (a) $xe^{-s^2/2}$ (b) $se^{-s^2/2}$ (c) $se^{-x^2/2}$ (d) $xe^{-sx^2/2}$
- 5. Z(1)=
 - (a) $\frac{1}{z-1}$ (b) $\frac{1}{z}$ (c) $\frac{z}{z-1}$ (d) $\frac{z^2}{z-1}$

- 6. $\sum_{r=0}^{n} f(r)g(n-r) =$ (a) f(n) * g(n)(b) f(n)/g(n)(c) $f(n) \cdot g(n)$ (d) f(n) - g(n)
- 7. The partial differential equation obtained from $z = (x^2 + a^2)(y^2 + b^2)$ is

(a) $4yz = pq$	(b) $4xz = p + q$
(c) $4xyz = p - q$	(d) $4xyz = pq$

8. A solution that contains as many arbitrary constants as there are independent variables is called as

(a) singular integral	(b) general integral
(c) complete integral	(d) particular integral

9. If $B^2 - 4AC < 0$, then the second order partial differential equation is said to be

(a) parabolic	(b) elliptic	(c) hyperbolic	(d) quadratic
---------------	--------------	----------------	---------------

10. In ______ state, temperature do not depend on time 't'.

(a) steady (b)	(b) transient	(c) absolute	(d) bounded
	PART - B (5	x 2 = 10 Marks)	

- 11. State Dirichlet's conditions for the existence of Fourier series.
- 12. Find the Fourier sine transform of $\frac{1}{x}$, $0 < x < \infty$.
- 13. State initial and final value theorem on Z transform.
- 14. Form the partial differential equation by eliminating the arbitrary function from z = f(my lx).
- 15. Write the three possible solutions of the one dimensional wave equation.

PART - C (5 x
$$16 = 80$$
 Marks)

- 16. (a) (i) Find the Fourier series expansion of $f(x) = \begin{cases} x, & 0 < x < \pi \\ 2\pi x, \pi < x < 2\pi \end{cases}$ and hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \dots = \frac{\pi^2}{8}$. (8)
 - (ii) Express $f(x) = x(\pi x), 0 < x < \pi$, as a Fourier sine series of periodicity 2π and deduce that $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \dots = \frac{\pi^3}{32}$. (8)

51032

(b) (i) Find the Fourier series of $y = x^2$ in $-\pi < x < \pi$ and show that

$$1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}.$$
 (8)

(ii) The following table gives the variations of a periodic function over the period T.

x	0	T/6	T/3	T/2	2T/3	5T/6	Т
у	1.98	1.3	1.05	1.3	-0.88	-0.25	1.98

Show that
$$f(x) = 0.75 + 0.37\cos\theta + 1.004\sin\theta$$
 where $\theta = \frac{2\pi x}{T}$. (8)

17. (a) Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, |x| \le 1\\ 0, & |x| > 1 \end{cases}$. Hence prove that

(i)
$$\int_0^\infty \left(\frac{\sin s - s \cos s}{s^3}\right) \cos \frac{s}{2} ds = \frac{3\pi}{16}$$
. (8)

(ii)
$$\int_0^\infty \left(\frac{\sin x - x\cos x}{x^3}\right)^2 dx = \frac{\pi}{15}$$
. (8)

(b) (i) Find the Fourier cosine transform of
$$\frac{1}{a^2 + x^2}$$
. (8)

(ii) Find the Fourier Sine transform of xe^{-ax} . (8)

18. (a) (i) Find
$$Z\left(\frac{1}{n(n-1)}\right)$$
 (8)

(ii) Find $Z(r^n cosn\theta)$ and $Z(r^n sinn\theta)$. (8)

Or

(b) (i) Find
$$Z^{-1}\left(\frac{z^2}{(z-a)^2}\right)$$
 using convolution theorem. (8)

(ii) Solve the difference equation $Y_{n+2} - 5Y_{n+1} + 6Y_n = 4^n$ given that $Y_0 = D$, $Y_1 = 1$.

(8)

19. (a) (i) Solve:
$$x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$$
. (8)
(ii) Solve: $(D^3 + D^2D' - DD'^2 - D'^3)z = e^{2x+y} + \cos(x+y)$. (8)

3

51032

- (b) (i) Find the singular integral of $z = px + qy + p^2 q^2$. (8)
 - (ii) Find the partial differential equation of all spheres whose radii are the same. (8)
- 20. (a) A tightly stretched string with fixed end points x = 0 and x = l is initially in a position given by $y(x, 0) = k(lx x^2), 0 < x < l$. If it is released from rest from this position, find the displacement y at any distance x from one end at any time t.

(16)

Or

(b) An infinitely long plate of width π *cms* with insulated surfaces has its temperature u = 0 on both long sides and one of the shorter sides. The temperature along the short edge y = 0 is given by $u(x, 0) = 3x, 0 < x < \pi$. Find the steady state temperature distribution u(x, y). (16)