	Reg. No. :							
Q	uestion Paper Code	e: 41031						
B.E. / E	B.Tech. DEGREE EXAN	11NATION, NOV 201	6					
	Third Seme	ster						
	Civil Engined	ering						
14UMA321 - TRAN	ISFORMS AND PARTI	AL DIFFERENTIAL	EQUATIONS					
	(Common to ALL	branches)						
(Regulation 2014)								
Duration: Three hour	rs Answer ALL Qu		Maximum: 100 Marks					
	PART A - (10 x 1 =	= 10 Marks)						
If $f(x)$ is even in then the	e Fourier Coefficient b	n =						
(a) 1	(b) 0	(C) π	(d) $-\pi$					
R.M.S value of $f(x) = x$ in (-1,1) is								
(a) 0	(b) 1	(c) $\frac{1}{3}$	(d) $\sqrt{\frac{1}{3}}$					
If $F(f(x)) = F(s)$ and F	(g(x)) = G(s) then $F(f(x))$	(x) =						
(a) $F(s)G(s)$	(b) $F(s) * G(s)$	(c) $f(s) * g(s)$	(d) $F(x) * G(x)$					
If $F(f(x)) = F(s)$ then	F(f(x-a)) =							
(a) $e^{aix}F(s)$	(b) $e^{-ais}F(s)$	(c) $e^{ais}F(s)$	(d) $e^{-aix}F(s)$					
$\frac{Lim}{z \to -1}$ (z-1) F(z) =								
(a) f(1)	(b) $F(\infty)$	(c) $f(\infty)$	(d) f(0)					

1.

2.

3.

4.

5.

- 6. Z(1) =____
 - (a) $\frac{z}{z+1}$ (b) $\frac{z}{z-1}$ (c) $\frac{1}{z+1}$ (d) $\frac{1}{z-1}$
- 7. The two-dimensional heat equation is

(a)
$$\nabla^2 u = 0$$

(b) $\nabla^2 u = u_{tt}$
(c) $u_{xx} + u_{yy} = 0$
(d) $u_t = a^2 (u_{xx} + u_{yy})$

- 8. Classify the partial differential equation $4u_{xx} = u_{t}$.
 - (a) Hyperbolic (b) parabolic (c) Elliptic (d) Poisson
- 9. The finite difference approximation to y'_i =

(a)
$$\frac{y_{i+1} - y_{i-1}}{h}$$
 (b) $\frac{y_{i+1} + y_{i-1}}{h}$
(c) $\frac{y_{i+1} - y_{i-1}}{2h}$ (d) $\frac{y_{i+1} + y_{i-1}}{2h}$

10. The Laplace equation is

(a)
$$\nabla^2 u = \nabla x$$

(b) $\nabla^2 u = f(x, y)$
(c) $\nabla^2 u - f(x, y) = 0$
(d) $\nabla^2 u = 0$

PART - B (5 x
$$2 = 10$$
 Marks)

- 11. Find the Fourier constant a_0 for f(x) = k in $(0, 2\pi)$
- 12. State the Fourier integral theorem.
- 13. Find the Z transform of f(n)=n.
- 14. Write all possible solutions of the two-dimensional heat equation in steady state.
- 15. Write down the standard five-point formula to solve the Laplace equation.

PART - C (5 x 16 = 80 Marks)

16. (a) (i) Find the Fourier series for $f(x) = 1 + x + x^2$ in $(-\pi, \pi)$. Deduce that

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \infty = \frac{\pi^2}{6}.$$
 (12)

(ii) Find the half range sine series for f(x) = x in $(0, \pi)$. (4)

Or

(b) (i) Find the cosine series for $f(x) = \pi x - x^2$ in $(0, \pi)$ and show that

$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}.$$
(8)

(ii) Find Fourier series up to second harmonic for the following data:

X	0	$\frac{\pi}{3}$	$2\pi/3$	π	$4\pi/_3$	$5\pi/3$	2π
У	1	1.4	1.9	1.7	1.5	1.2	1

(8)

17. (a) (i) Evaluate
$$\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2} + a^{2})(x^{2} + b^{2})}$$
(8)

(ii) Find Fourier cosine transform of $e^{-a^2 x^2}$ (8)

Or

(b) Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$. Hence deduce the value of

(i)
$$\int_{0}^{\infty} \frac{\sin s - s \cos s}{s^{3}} \cos \frac{s}{2} ds$$
 (ii)
$$\int_{0}^{\infty} \left[\frac{\sin s - s \cos s}{s^{3}} \right]^{2} ds$$
 (16)

18. (a) (i) Find the inverse Z – transform of $\frac{10 z}{(z-1)(z-2)}$ (8)

(ii) State and prove convolution theorem on Z – Transform. (8)

41031

(b) (i) Solve $y_{n+2} - 3y_{n+1} + 2y_n = 2^n$ given that $y_0 = 0$ and $y_1 = 0$ using Z-transform. (10)

(ii) Find Z- transform of
$$\frac{1}{(n+1)(n+2)}$$
. (6)

19. (a) If a string of length l is initially at rest in its equilibrium position and each of its Point is given a velocity $v_0 \sin^3\left(\frac{\pi x}{l}\right)$, 0 < x < l, find the displacement of the string y(x,t). (16)

Or

- (b) A metal bar 20cm long, with insulated sides, has its ends *A* and *B* kept at $_{30^\circ C}$ and $90^\circ C$ respectively until steady state conditions prevail. The temperature at each end is suddenly raised to $_{0^\circ C}$ and kept so. Find the subsequent temperature at any time of the bar at any time. (16)
- 20. (a) Solve the Poisson's equations $\nabla^2 u = -81 xy$, 0 < x < 1, 0 < y < 1, h=1/3, u(0,y)=u(x,0), u(1,y)=u(x,1)=100. (16)

Or

- (b) (i) Solve $u_{xx} = 32 u_t$ with h=0.25 for t>0; 0<x<1 and u(x,0)=u(0,t)=0; u(1,t)=t. Tabulate u upto t=5 sec using Bender-Schmidt formula. (8)
 - (ii) Find the solution to the wave equations $u_{xx} = u_{tt}$, 0 < x < 1, t > 0, given that $u_t(x,0)=0$, u(1,t) = u(0,t) = 0 and $u(x,0) = 100 \sin \pi x$. Compute u for 4 time steps with h=0.25. (8)