Reg. No. :							
------------	--	--	--	--	--	--	--

Question Paper Code: 51022

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2016

Second Semester

Civil Engineering

15UMA202 - ENGINEERING MATHEMATICS-II

(Common to ALL Branches)

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

- 1. The Particular solution of $(D^2 + 3D + 2)y = 5cosx$ is
 - (a) 0.5cosx + 1.5sinx(b) x1.5cosx + 0.5 sinx(c) 1.5 sinx(d) 0.5cosx
- 2. The corresponding equation with constant coefficients of the equation $((2+3x)^2D^2 + 5(2+3x)D - 3)y = 0$ is

(a)
$$(9\theta^2 - 9\theta - 3)y = 0$$

(b) $(9\theta^2 + 6\theta - 3)y = 0$
(c) $(9\theta^2 - 24\theta - 3)y = 0$
(d) $(\theta^2 - 9\theta - 3)y = 0$

3. If
$$\phi = log(x^2 + y^2 + z^2)$$
, then $\nabla \phi =$
(a) 0 (b) \vec{r} (c) $r\vec{r}$ (d) $\frac{2\vec{r}}{r^2}$

4. If
$$\vec{F} = (x + 3y)\vec{i} + (y - 2z)\vec{j} + (x + \lambda z)k$$
 is solenoidal, then the value of λ is
(a) 2 (b) -2 (c) 3 (d) 0

- 5. Let $f(z) = e^z$. Then the harmonic conjugate of $e^x \cos y$ is (a) $e^x cos y$ (c) $-e^x \cos v$ (b) $e^x sinv$ (d) $-e^x siny$ 6. The fixed points of $w = \frac{2zi+5}{z-4i}$ are (a) 5i, i (b) -5i, -i (c) 5i, -i (d) -5i, i 7. The value of $\int_c e^{1/z} dz$, where c is |z| = 1 is (d) $\frac{1}{2\pi i}$ (a) 2*πi* (b) ∞ (c) 08. The Residue of $f(z) = \frac{z}{(z-1)^2}$ at its pole is (a) 0(c) -2 (d) 1/2 (b) 1 9. The Laplace transform of e^{-t} sint is (a) $\frac{s+1}{(s+1)^2+1}$ (b) $\frac{1}{s^2+1}$ (c) $\frac{s}{s^2+1}$ (d) $\frac{1}{(s+1)^2+1}$ 10. $L^{-1}\left[\frac{1}{s(s+1)}\right] =$ (a) $1 + e^t$ (b) $\frac{1 + e^t}{t}$ (c) $\frac{1-e^t}{t}$ (d) $1 - e^{-t}$ PART - B (5 x 2 = 10 Marks)
- 11. Solve $(D^2 + D + 1)y = 0$.
- 12. Prove that $\nabla^2(r^n) = n(n+1)r^{n-2}$ and hence show that $\nabla^2\left(\frac{1}{r}\right) = 0$.

13. State any two properties of analytic function.

14. Expand *sinz* in a Taylor's series about $z = \frac{\pi}{4}$.

15. Find $L^{-1} \left[log \left(\frac{s^2 - a^2}{s^2 + b^2} \right) \right]$.

PART - C (
$$5 \times 16 = 80$$
 Marks)

16. (a) (i) Solve $(D^2 + 4D + 3)y = e^{2x}cos2x - sin3x.$ (8)

(ii) Radium decomposes at a rate proportional to the quantity of radium present. Suppose that it is found that in 25 years approximately 1.1% of certain quantity

51022

of radium has decomposed. Determine approximately how long will it take for onehalf of the original amount of radium to decompose. (8)

Or

(b) (i) Solve $\frac{d^2y}{dx^2} + 4y = 4tan2x$ using method of variation of parameters. (8)

(ii) Solve
$$(x^2D^2 - xD + 1)y = \left(\frac{\log x}{x}\right)^2$$
. (8)

- 17. (a) (i) Verify Green's theorem in the plane for $\int_c (3x^2 8y^2) dx + (4y 6xy) dy$, where c is the boundary of the region bounded by $x = y^2$ and $y = x^2$. (8)
 - (ii) Verify Stoke's theorem for $\vec{F} = (y z + 2)\vec{i} + (yz + 4)\vec{j} xz\vec{k}$, where *s* is the surface of the cube x = 0, x = 2, y = 0, y = 2, z = 0, z = 2 above the xy-plane. (8)

Or

(b) Verify Gauss's divergence theorem for $\vec{F} = (x^2 - yz)\vec{i} - (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ taken over rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$. (16)

18. (a) (i) Find v such that f(z) = u + iv is analytic, given $u = e^{-(x^2 - y^2)} cos 2xy$. (8)

(ii) Determine the bilinear transformation that maps the points -1, 0, 1 in the z- plane onto the points 0, i, 3i in the w-plane.

Or

- (b) (i) If f(z) = u + iv is an analytic function of z, then show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^p = p^2 |f(z)|^{p-2} |f'(z)|^2$. (8)
 - (ii) Find the image of the circle |z 2i| = 2 under the transformation w = 1/z. (8)

19. (a) (i) Evaluate the integral
$$\int_C \frac{z+4}{z^2+2z+5} dz$$
, where c is the circle $|z+1-i| = 2$. (8)

(ii) Evaluate
$$\int_0^\infty \frac{x \sin mx}{x^2 + a^2} dx, m > 0, a > 0.$$
 (8)

3

51022

- (b) (i) Evaluate $\int_0^{2\pi} \frac{d\theta}{13+5sin\theta}$ by contour integration. (8)
 - (ii) Find the Laurent's series for $(z) = \frac{7z-2}{z(z+1)(z-2)}$ valid in the region 1 < |z+1| < 3. (8)

20. (a) (i) Find (1)
$$L[t^2e^t sint]$$
 (2) $L\left[\frac{sin^2t}{t}\right]$. (8)

(ii) Using Convolution theorem, find
$$L^{-1}\left[\frac{s^2}{(s^2+a^2)^2}\right]$$
. (8)

Or

(b) (i) Find the Laplace Transform of
$$f(t) = \begin{cases} t, & 0 \le t \le a \\ 2a - t, & a \le t \le 2a \end{cases}$$
 and $f(t+2a) = f(t).$ (8)

(ii) Solve $y'' - 3y' + 2y = e^{2t}$, given that y(0) = -3, y'(0) = 5. (8)