Reg. No. :

Question Paper Code: 41402

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2016

Fourth Semester

Civil Engineering

01UMA422 - NUMERICAL METHODS

(Common to EEE, EIE and ICE)

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. What is the condition for the convergence of the fixed point iteration method?
- 2. Define truncation error.
- 3. State condition for the convergence of iterative methods of solving system of linear algebraic equations.
- 4. Find the dominant Eigen value of $A = \begin{pmatrix} 1, 2 \\ 3, 4 \end{pmatrix}$ by power method.
- 5. State Newton's backward interpolation formula.
- 6. State the conditions required for a natural cubic spline.
- 7. State Newton's forward formula to find $\frac{dy}{dx}$, $\frac{d^2 y}{dx^2} \& \frac{d^3 y}{dx^3}$ at $x = x_0$
- 8. State Simpson's rule for evaluating $\int_a^b \int_c^d f(x, y) dx dy$.
- 9. State the principle of least squares.
- 10. Write the observation equations when the equation y = ax + b is fit by the method of moments.

- 11. (a) (i) Find the positive real root of 3x cosx 1 = 0 using Newton-Rapshon method. (8)
 - (ii) Solve the equation $x^3 + x^2 1 = 0$ for the positive root by iteration method. (8)

Or

- (b) (i) Find the Positive root of $x^3 = 2x + 5$ by False position method. (8)
 - $x^3 = 6x 4$ that root lies between 0 and 1 by Newton-(ii) Find the root of Raphson's method. (8)
- 12. (a) (i) Solve the system of equations by Gauss Jordan method.

$$\begin{array}{l} x + 2y + z &= 3 \\ 2x + 3y + 3z &= 10 \\ 3x - y + 2z &= 13 \end{array}$$
(8)

(ii) Find the numerically largest Eigen value of
$$A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$$
 and the corresponding Eigen Vector. (8)

corresponding Eigen Vector.

Or

- (b) (i) Using Jacobi method, find the Eigen values and Eigen vectors of $A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}.$ (8)
 - (ii) Solve the equations by Gauss-Seidal method 27x + 6y - z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110. (8)
- 13. (a) (i) From the following table of Half Yearly Premium for policies maturing at different ages, estimate the Premium for policies maturing at age 46 and 63.

Age x:	45	50	55	60	65
Premium y:	114.84	96.16	83.32	74.48	68.48

(8)

(ii) Using Lagrange's Interpolation formula, find y(10) from the following table.

x:	5	6	9	11
y:	12	13	14	16

(8)

Or

(b) Using cubic spline to the following data find Y(1.5).

x	1	2	3	4
Y	1	2	5	11

(16)

14. (a) (i) Find the first two derivatives of $y = (x)^{1/3}$ at x = 50 & x = 56 given the table below.

x :	50	51	52	53	54	55	56	
y :	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259	
	•	l	L		L	L	L	(8

(ii) Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \sin(x+y) dx dy$ by using Trapezoidal rule and Simpson's rule. (8)

Or

- (b) Evaluate $\int_{1}^{2} \int_{1}^{2} \frac{dxdy}{x^{2}+y^{2}}$ h=0.2, k=0.25 by both trapezoidal and Simpson's rule. (16)
- 15. (a) (i) Find a straight line fit of the form y = a + bx by the method of group averages for the following data.

x :	0	5	10	15	20	25
y :	12	15	17	22	24	30

(8)

(ii) Fit a curve of the form $y = ax^b$ to the data.

x :	1	2	3	4	5	6
y :	1200	900	600	200	110	50

(8)

(b) (i) Fit a parabola of the pattern $y = ax^2 + bx + c$ to the data given below.

x	20	40	60	80	100	120
У	5.5	9.1	14.9	22.8	33.3	46

(8)

(8)

(ii) By using the method of moments, obtain a straight line fit to the data.

x	1	2	3	4
у	0.30	0.64	1.32	5.40