	Reg. No. :								
Question Paper Code: 53U01									
M.E. DEGREE EXAMINATION, DEC 2020									
Third Semester									
Structural Engineering									
15PSE301 – STRUCTURAL DYNAMICS									
(Regulation 2015)									
Duration: 1.15 hrs Maximum: 30 Marks									
PART A - $(6 \times 1 = 6 \text{ Marks})$									
(Answer any six of the following questions)									
Result of equal exc	CO1- R								
(a) Forced frequence	cy (b) Damping	(c) Resonance	(d) Natural period						
. If ω is forcing frequency and ω_n is the natural frequency then CO1- R resonance occurs when									
(a) $\omega > \omega_n$	(b) $\omega = \omega_n$	(c) $\omega_n > \omega$	(d) $\omega \neq \omega_n$						
. The process of dividing all the components in a modal vector by the largest CO2 -R component is called									
(a) Orthogonalisati	on (b) Diagonalisatio	n (c) Normalisation	(d) Unification						
. The number of natural frequencies in a 2-DOF system will be CO2									
(a) Only one	(b) α	(c) Two	(d) As required						
. The first orthogona	CO3- R								
(a) Mode vectors	(b) Damping matr	ix (c) Stiffness matrix	(d) Mass matrix						
. An n-degree of sys	CO3- R								
(a) n+1 coordinates	s (b) n-1 coordinate	s (c) n coordinates	(d) 2n coordinates						
If Φ is the mode sh	CO4 -R								
(a) $\Phi^{ii} = 0$	(b) $\Phi^{iv} = 0$ and $\Phi^{iii} = 0$	(c) $\Phi^{ii} = 0$ and $\Phi^{iii} = 0$	(d) $\Phi^i = 0$ and $\Phi = 0$						

1.

2.

3.

4.

5.

6.

7.

	(a) Dynamically coupled			(b) Statically coupled						
	(c) Both statically and dynamically coupled (d) None of these									
9.	Damping constant	t is generally					CO5- R			
	(a) a variable	(b) assumed	(c) a f	raction of mass	(d) a f	(d) a fraction of stiffness				
10.	Principle of mode superposition applies only when the system is CO5- F									
	(a) Linear	(b) Nonlinear	(c) Dynamic (d)		(d) St	Static				
	PART – B (3 x 8= 24 Marks)									
(Answer any three of the following questions)										
11.	1. Derive the equation of motion by					CO1- U	(8)			
12.	(a) Simple Harmonic Motion principleDerive the general equation of motion for damped forced vibration with 2-DOF.Indicate the solution for the characteristic equation.						(8)			
13.	Explain the coupled state of equations of motion and demonstrate how they are uncoupled.					CO3-U	(8)			
14.	Derive the equations of motion for forced vibration of an undamped continuous system in terms of principal coordinates.					CO4-App	(8)			
15.	Write down the method	algorithm for step	-by-step	solution using Wil	son-O	CO5-U	(8)			

53U01