Reg. No. :

Question Paper Code: 52U01

M.E. DEGREE EXAMINATION DEC 2020

Second Semester

Structural Engineering

15PSE201 - FINITE ELEMENT ANALYSIS FOR STRUCTURAL ENGINEERING

(Regulation 2015)

Duration: 1.15 hrs

Maximum: 30 Marks

PART A - $(6 \times 1 = 6 \text{ Marks})$

(Answer any six of the following questions)

1.	The art of subdividing a structure into a convenient number of smaller elements is known as			c CO1- R
	(a) Assemblage	(b) Differentiation	(c) Discretisation	(d) Integration
2.	Global stiffness matrix is amatrix because itsCO1-1determinant is equal to zero.			
	(a) Symmetric	(b) Unsymmetric	(c) Singular (d) No	one of the above
3.	The coordinate system in which a separate co-ordinate is used for each CO2 -R element is known as			
	(a) Local coordinate system		(b) Global coordinate system	
	(c) Natural coordinate system		(d) None of the above	
4.	One of the properties of stiffness matrix is the sum of the elements in any CO2 -R column must be equal to			
	(a) 0	(b) 1	(c) 2	(d) 3
5.	The shape function at node 1 for CST element is CO3- H			
	(a) $\alpha_1 + \beta_1 x + \gamma_1 y/2A$	(b) $\alpha_1 + \beta_1 x + \gamma_1 y/3A$	(c) $\alpha_1 + \beta_1 y + \gamma_1 x/2A$	(d) $\alpha_1 + \beta_1 x + \gamma_1 y/4A$
6.	Which one of the following triangular element is LST elementCO3- R			
	(a) 3 noded	(b) 12 noded	(c) 6 noded	(d) 9 noded

- 7. In which method of mesh refinement the order of polynomial approximation CO4 -R for all elements is kept constant and the number of elements are increased.
 (a) p method (b) s method (c) h method (d) None of these
 8. The band width is calculated from ______. CO4 -R
 - (a) (D-1)f (b) (D+1)f (c) (f+1)D (d) (f-1)D

9. If λ is the Eigen value and U is the eigen vecor, then the CO5- R characteristic equation for eigen value problem is given by

(a)
$$MU = \lambda KU$$
 (b) $K\lambda = MU$ (c) $\lambda U = KM$ (d) $KU = \lambda MU$

10. The stress due to temperature difference is given byCO5- R(a) $\alpha \Delta T$ (b) $\sigma \alpha \Delta T$ (c) $E \alpha \Delta T$ (d) $E \epsilon \Delta T$

PART – B (3 x
$$8 = 24$$
 Marks)

(Answer any three of the following questions)

- 11. Explain the step-by-step procedure to solve a typical problem using CO1-App (8) FEA.
- 12. Estimate the displacement vector, strains, stresses in the truss structure CO2- App (8) shown below.

- 13. Derive the shape functions of an eight noded quadrilateral element. CO3-App (8)
- 14. Discuss automatic mesh generation techniques and explain how the CO4 U (8) errors in FEM can be rectified to get accurate results.
- 15. Discuss about problems with material nonlinearity and explain about CO5 App (8) solution methods for such problems.

52U01