		Reg. No. :										
Question Paper Code: 51024												
M.E. DEGREE EXAMINATION, DEC 2020												
First Semester												
CAD / CAM												
15PMA124 - ADVANCED NUMERICAL METHODS												
(Regulation 2015)												
Г	Duration: 1.15 hrs.											
Puration. 1.15 ms PART A - $(6 \times 1 = 6 \text{ Marks})$												
(Answer any six of the following questions)												
1.	Which of the following is the iterative method?										C	01- R
	(a) Gauss elimination method			(b) Crout's method								
	(c) Gauss – Jacobi method			(d) Gauss Jordon								
2.	The root of the equation $x^3 - 2x - 5 = 0$ lies between									C	D1-]	R
	(a) 0 and 1	(b) 1 and 2	(c)	2	and 3	3		(d)	3 ar	1d 4		
3.	The Error term in Adam – Bash forth Predictor formula is										CC	02 -R
	(a) $\frac{14 h}{45} \Delta^4 y_0$	(b) $\frac{14 h}{45} \Delta^4 y_0$	(c)	$\frac{14}{45}$	$\frac{h}{\Delta^4}$	<i>y</i> ₀		(d)	Non	e of t	the a	.bove
4.	The Error of Runge k	utta fourth order is									CC)2 -R
	$() \cap (1^3)$			(1 5		(1)	0 1	4、		
-	$(a) O(h^2)$	(b) $O(h^2)$	NT' 1 1	(c)0((h [°])		(d)	O (h)		
5.	In solving equation $u_t = a^2 u_{xx}$ by crank- Nicholson method, to CO3- R simplify method we take $\frac{(\Delta x)^2}{2}$ as											
	simplify method we u	ake $\frac{1}{\alpha^2 k}$ as							-			
	(a) $\frac{1}{2}$	(b) 2	(c) 1					(d)	0			
6.	Hyperbolic equation i	rbolic equation is CO3- R										
	(a) $4u_{xx} - 3u_{xy} + 2u_{yy} = 0$ (b) $4u_{xx} - 6u_{xy} + 2u_{yy} = 0$							0				

7. Which of the following is the general form of Poisson's equation?

- (a) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$ (b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ (c) $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ (d) $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial^2 u}{\partial t^2}$
- 8. The Laplace equation i
 - (a) Hyperbolic (b) elliptic (c) parabolic
- 9. R(x) is orthogonal then

(a)
$$\int_{0}^{1} R(x) F_{i}(x) dx = 0$$
 (b) $\int_{-1}^{1} R(x) F_{i}(x) dx = 0$ (c) $\int_{0}^{1} R(x) dx = 0$ (d) $\int_{0}^{1} F_{i}(x) dx = 0$

- 10 Which method is called "Weighted residual method"
 - (a) Least square method (b) Collocation method
 - (c) Galerkin method

PART – B (3 x 8= 24 Marks)

(d) Rayleigh-Ritz method

(Answer any three of the following questions)

- 11. Use Faddeev's method to find the eigen values of the matrix CO1- App (8) $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{pmatrix}$ and hence find its inverse.
- 12. Solve the boundary value problem xy'' + y = 0, y(1) = 1 and y(1.25) = CO2- App (8) 1.3513 by shooting method. Take h = 0.25 and assume the initial guesses for y' (1) as 1.2 and 1.5.
- 13. Solve $u_{tt} = u_{xx}$ up to t = 0.5 with a spacing of 0.1 subject to y(0, CO3-App(8))t) = 0, y(1, t) = 0, yt(x, 0) = 0 and y(x, 0) = 10 + x(1-x).
- 14. Solve the Poisson equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ subject to the CO4 -App (8) condition u = 0 at x = 0 and x = 3, u = 3, u = 0 at y = 0 and u = 1 at y = 3 for 0 < x < 3. Find the solution taking h = 1 with a square.

2

15. Solve the boundary value problem

 $u_{xx} + u_{yy} = -1, |x| \le 1, |y| \le 1 \text{ and } u=0 \text{ on } |x| = 1, |y| = 1.$

Use the Galerkin finite element method to determine the solution values at the nodes $(0,0), \left(\frac{1}{2}, 0\right)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$.

CO4 -R

CO4 -R

CO5- R

(d) none of these

##